An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring
Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microflui...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-04, Vol.21 (8), p.9642-9648 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9648 |
---|---|
container_issue | 8 |
container_start_page | 9642 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Liang, Bo Cao, Qingpeng Mao, Xiyu Pan, Wenhao Tu, Tingting Fang, Lu Ye, Xuesong |
description | Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K + concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising. |
doi_str_mv | 10.1109/JSEN.2020.3009327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9141361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9141361</ieee_id><sourcerecordid>2503500682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-bae5c32931ad243355f213194ffa98ee861feaed7b18281cd7319910be2f30da3</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hve3K1kdEVAwoETS-NWW7JSWwQbtp_Pdugfh0T3LPuTfnI-QaWA-AqbuX-ei1xxlnPcGYEjw5IR2QMo0gidPTVgsWxSL5OicXIawZA5XIpEM-BwUdFxWuvKkwpzOzQx_dm9Doqct8aTe1y11GH_DbZUht6ek7mk20cFuk8x80FZ2VlQnB1Vs6LQtXld4Vq0tyZs0m4NVxdsnH42gxfI4mb0_j4WASZSKGKloalJngSoDJeSyElJaDABVba1SKmPbBosE8WULKU8jypFkqYEvkVrDciC65Pdzd-XJfY6j0uqx90bzUXDIhGeunvHHBwdUUCsGj1Tvvtsb_amC6xadbfLrFp4_4mszNIeMQ8d-vIAbRB_EHnpRrOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503500682</pqid></control><display><type>article</type><title>An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Bo ; Cao, Qingpeng ; Mao, Xiyu ; Pan, Wenhao ; Tu, Tingting ; Fang, Lu ; Ye, Xuesong</creator><creatorcontrib>Liang, Bo ; Cao, Qingpeng ; Mao, Xiyu ; Pan, Wenhao ; Tu, Tingting ; Fang, Lu ; Ye, Xuesong</creatorcontrib><description>Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K + concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3009327</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical monitoring ; Chemical sensors ; Electrodes ; Evaporators ; Microfluidic devices ; Microfluidics ; Monitoring ; paper-based microfluidic device ; Potassium ; Real time ; Selectivity ; Sensors ; Skin ; Substrates ; Sweat ; sweat potassium ; Three dimensional flow ; Three dimensional models ; Wearable electrochemical sensor</subject><ispartof>IEEE sensors journal, 2021-04, Vol.21 (8), p.9642-9648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-bae5c32931ad243355f213194ffa98ee861feaed7b18281cd7319910be2f30da3</citedby><cites>FETCH-LOGICAL-c341t-bae5c32931ad243355f213194ffa98ee861feaed7b18281cd7319910be2f30da3</cites><orcidid>0000-0002-3670-2296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9141361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9141361$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Bo</creatorcontrib><creatorcontrib>Cao, Qingpeng</creatorcontrib><creatorcontrib>Mao, Xiyu</creatorcontrib><creatorcontrib>Pan, Wenhao</creatorcontrib><creatorcontrib>Tu, Tingting</creatorcontrib><creatorcontrib>Fang, Lu</creatorcontrib><creatorcontrib>Ye, Xuesong</creatorcontrib><title>An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K + concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising.</description><subject>Biomedical monitoring</subject><subject>Chemical sensors</subject><subject>Electrodes</subject><subject>Evaporators</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Monitoring</subject><subject>paper-based microfluidic device</subject><subject>Potassium</subject><subject>Real time</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Skin</subject><subject>Substrates</subject><subject>Sweat</subject><subject>sweat potassium</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Wearable electrochemical sensor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hve3K1kdEVAwoETS-NWW7JSWwQbtp_Pdugfh0T3LPuTfnI-QaWA-AqbuX-ei1xxlnPcGYEjw5IR2QMo0gidPTVgsWxSL5OicXIawZA5XIpEM-BwUdFxWuvKkwpzOzQx_dm9Doqct8aTe1y11GH_DbZUht6ek7mk20cFuk8x80FZ2VlQnB1Vs6LQtXld4Vq0tyZs0m4NVxdsnH42gxfI4mb0_j4WASZSKGKloalJngSoDJeSyElJaDABVba1SKmPbBosE8WULKU8jypFkqYEvkVrDciC65Pdzd-XJfY6j0uqx90bzUXDIhGeunvHHBwdUUCsGj1Tvvtsb_amC6xadbfLrFp4_4mszNIeMQ8d-vIAbRB_EHnpRrOg</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Liang, Bo</creator><creator>Cao, Qingpeng</creator><creator>Mao, Xiyu</creator><creator>Pan, Wenhao</creator><creator>Tu, Tingting</creator><creator>Fang, Lu</creator><creator>Ye, Xuesong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3670-2296</orcidid></search><sort><creationdate>20210415</creationdate><title>An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring</title><author>Liang, Bo ; Cao, Qingpeng ; Mao, Xiyu ; Pan, Wenhao ; Tu, Tingting ; Fang, Lu ; Ye, Xuesong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-bae5c32931ad243355f213194ffa98ee861feaed7b18281cd7319910be2f30da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical monitoring</topic><topic>Chemical sensors</topic><topic>Electrodes</topic><topic>Evaporators</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Monitoring</topic><topic>paper-based microfluidic device</topic><topic>Potassium</topic><topic>Real time</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Skin</topic><topic>Substrates</topic><topic>Sweat</topic><topic>sweat potassium</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Wearable electrochemical sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Bo</creatorcontrib><creatorcontrib>Cao, Qingpeng</creatorcontrib><creatorcontrib>Mao, Xiyu</creatorcontrib><creatorcontrib>Pan, Wenhao</creatorcontrib><creatorcontrib>Tu, Tingting</creatorcontrib><creatorcontrib>Fang, Lu</creatorcontrib><creatorcontrib>Ye, Xuesong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Bo</au><au>Cao, Qingpeng</au><au>Mao, Xiyu</au><au>Pan, Wenhao</au><au>Tu, Tingting</au><au>Fang, Lu</au><au>Ye, Xuesong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-04-15</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>9642</spage><epage>9648</epage><pages>9642-9648</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K + concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3009327</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3670-2296</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-04, Vol.21 (8), p.9642-9648 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9141361 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical monitoring Chemical sensors Electrodes Evaporators Microfluidic devices Microfluidics Monitoring paper-based microfluidic device Potassium Real time Selectivity Sensors Skin Substrates Sweat sweat potassium Three dimensional flow Three dimensional models Wearable electrochemical sensor |
title | An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Paper-Based%20Microfluidic%20Device%20for%20Real-Time%20Sweat%20Potassium%20Monitoring&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liang,%20Bo&rft.date=2021-04-15&rft.volume=21&rft.issue=8&rft.spage=9642&rft.epage=9648&rft.pages=9642-9648&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3009327&rft_dat=%3Cproquest_RIE%3E2503500682%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503500682&rft_id=info:pmid/&rft_ieee_id=9141361&rfr_iscdi=true |