An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring

Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microflui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-04, Vol.21 (8), p.9642-9648
Hauptverfasser: Liang, Bo, Cao, Qingpeng, Mao, Xiyu, Pan, Wenhao, Tu, Tingting, Fang, Lu, Ye, Xuesong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9648
container_issue 8
container_start_page 9642
container_title IEEE sensors journal
container_volume 21
creator Liang, Bo
Cao, Qingpeng
Mao, Xiyu
Pan, Wenhao
Tu, Tingting
Fang, Lu
Ye, Xuesong
description Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K + concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising.
doi_str_mv 10.1109/JSEN.2020.3009327
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9141361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9141361</ieee_id><sourcerecordid>2503500682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-bae5c32931ad243355f213194ffa98ee861feaed7b18281cd7319910be2f30da3</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hve3K1kdEVAwoETS-NWW7JSWwQbtp_Pdugfh0T3LPuTfnI-QaWA-AqbuX-ei1xxlnPcGYEjw5IR2QMo0gidPTVgsWxSL5OicXIawZA5XIpEM-BwUdFxWuvKkwpzOzQx_dm9Doqct8aTe1y11GH_DbZUht6ek7mk20cFuk8x80FZ2VlQnB1Vs6LQtXld4Vq0tyZs0m4NVxdsnH42gxfI4mb0_j4WASZSKGKloalJngSoDJeSyElJaDABVba1SKmPbBosE8WULKU8jypFkqYEvkVrDciC65Pdzd-XJfY6j0uqx90bzUXDIhGeunvHHBwdUUCsGj1Tvvtsb_amC6xadbfLrFp4_4mszNIeMQ8d-vIAbRB_EHnpRrOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503500682</pqid></control><display><type>article</type><title>An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Bo ; Cao, Qingpeng ; Mao, Xiyu ; Pan, Wenhao ; Tu, Tingting ; Fang, Lu ; Ye, Xuesong</creator><creatorcontrib>Liang, Bo ; Cao, Qingpeng ; Mao, Xiyu ; Pan, Wenhao ; Tu, Tingting ; Fang, Lu ; Ye, Xuesong</creatorcontrib><description>Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K + concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3009327</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical monitoring ; Chemical sensors ; Electrodes ; Evaporators ; Microfluidic devices ; Microfluidics ; Monitoring ; paper-based microfluidic device ; Potassium ; Real time ; Selectivity ; Sensors ; Skin ; Substrates ; Sweat ; sweat potassium ; Three dimensional flow ; Three dimensional models ; Wearable electrochemical sensor</subject><ispartof>IEEE sensors journal, 2021-04, Vol.21 (8), p.9642-9648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-bae5c32931ad243355f213194ffa98ee861feaed7b18281cd7319910be2f30da3</citedby><cites>FETCH-LOGICAL-c341t-bae5c32931ad243355f213194ffa98ee861feaed7b18281cd7319910be2f30da3</cites><orcidid>0000-0002-3670-2296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9141361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9141361$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Bo</creatorcontrib><creatorcontrib>Cao, Qingpeng</creatorcontrib><creatorcontrib>Mao, Xiyu</creatorcontrib><creatorcontrib>Pan, Wenhao</creatorcontrib><creatorcontrib>Tu, Tingting</creatorcontrib><creatorcontrib>Fang, Lu</creatorcontrib><creatorcontrib>Ye, Xuesong</creatorcontrib><title>An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K + concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising.</description><subject>Biomedical monitoring</subject><subject>Chemical sensors</subject><subject>Electrodes</subject><subject>Evaporators</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Monitoring</subject><subject>paper-based microfluidic device</subject><subject>Potassium</subject><subject>Real time</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Skin</subject><subject>Substrates</subject><subject>Sweat</subject><subject>sweat potassium</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Wearable electrochemical sensor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hve3K1kdEVAwoETS-NWW7JSWwQbtp_Pdugfh0T3LPuTfnI-QaWA-AqbuX-ei1xxlnPcGYEjw5IR2QMo0gidPTVgsWxSL5OicXIawZA5XIpEM-BwUdFxWuvKkwpzOzQx_dm9Doqct8aTe1y11GH_DbZUht6ek7mk20cFuk8x80FZ2VlQnB1Vs6LQtXld4Vq0tyZs0m4NVxdsnH42gxfI4mb0_j4WASZSKGKloalJngSoDJeSyElJaDABVba1SKmPbBosE8WULKU8jypFkqYEvkVrDciC65Pdzd-XJfY6j0uqx90bzUXDIhGeunvHHBwdUUCsGj1Tvvtsb_amC6xadbfLrFp4_4mszNIeMQ8d-vIAbRB_EHnpRrOg</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Liang, Bo</creator><creator>Cao, Qingpeng</creator><creator>Mao, Xiyu</creator><creator>Pan, Wenhao</creator><creator>Tu, Tingting</creator><creator>Fang, Lu</creator><creator>Ye, Xuesong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3670-2296</orcidid></search><sort><creationdate>20210415</creationdate><title>An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring</title><author>Liang, Bo ; Cao, Qingpeng ; Mao, Xiyu ; Pan, Wenhao ; Tu, Tingting ; Fang, Lu ; Ye, Xuesong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-bae5c32931ad243355f213194ffa98ee861feaed7b18281cd7319910be2f30da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical monitoring</topic><topic>Chemical sensors</topic><topic>Electrodes</topic><topic>Evaporators</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Monitoring</topic><topic>paper-based microfluidic device</topic><topic>Potassium</topic><topic>Real time</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Skin</topic><topic>Substrates</topic><topic>Sweat</topic><topic>sweat potassium</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Wearable electrochemical sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Bo</creatorcontrib><creatorcontrib>Cao, Qingpeng</creatorcontrib><creatorcontrib>Mao, Xiyu</creatorcontrib><creatorcontrib>Pan, Wenhao</creatorcontrib><creatorcontrib>Tu, Tingting</creatorcontrib><creatorcontrib>Fang, Lu</creatorcontrib><creatorcontrib>Ye, Xuesong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Bo</au><au>Cao, Qingpeng</au><au>Mao, Xiyu</au><au>Pan, Wenhao</au><au>Tu, Tingting</au><au>Fang, Lu</au><au>Ye, Xuesong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-04-15</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>9642</spage><epage>9648</epage><pages>9642-9648</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K + concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3009327</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3670-2296</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-04, Vol.21 (8), p.9642-9648
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9141361
source IEEE Electronic Library (IEL)
subjects Biomedical monitoring
Chemical sensors
Electrodes
Evaporators
Microfluidic devices
Microfluidics
Monitoring
paper-based microfluidic device
Potassium
Real time
Selectivity
Sensors
Skin
Substrates
Sweat
sweat potassium
Three dimensional flow
Three dimensional models
Wearable electrochemical sensor
title An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Paper-Based%20Microfluidic%20Device%20for%20Real-Time%20Sweat%20Potassium%20Monitoring&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liang,%20Bo&rft.date=2021-04-15&rft.volume=21&rft.issue=8&rft.spage=9642&rft.epage=9648&rft.pages=9642-9648&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3009327&rft_dat=%3Cproquest_RIE%3E2503500682%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503500682&rft_id=info:pmid/&rft_ieee_id=9141361&rfr_iscdi=true