Decentralized Proximal Gradient Algorithms With Linear Convergence Rates
This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2021-06, Vol.66 (6), p.2787-2794 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2794 |
---|---|
container_issue | 6 |
container_start_page | 2787 |
container_title | IEEE transactions on automatic control |
container_volume | 66 |
creator | Alghunaim, Sulaiman A. Ryu, Ernest K. Yuan, Kun Sayed, Ali H. |
description | This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms. |
doi_str_mv | 10.1109/TAC.2020.3009363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9141196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9141196</ieee_id><sourcerecordid>2532306241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-50af50f9d760fe5dce263033d4db083bc5e7fafe97f787e85770ab23bdfbecbc3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59TZnWw-jiVqKxQUqXhcNpvZmpImdTcV9a93S4unxzDvzfB-jF1zmHAOxd1yWk4ECJggQIEpnrARlzKPhRR4ykYAPI8Lkafn7ML7dRjTJOEjNr8nQ93gdNv8Uh29uP672eg2mjldN2ERTdtV75rhY-Oj9yDRoulIu6jsuy9yK-oMRa96IH_JzqxuPV0ddczeHh-W5TxePM-eyukiNoj5EEvQVoIt6iwFS7I2JFIExDqpK8ixMpIyqy0Vmc3yjHKZZaArgVVtKzKVwTG7Pdzduv5zR35Q637nuvBSCYkCIRUJDy44uIzrvXdk1daFXu5HcVB7XirwUnte6sgrRG4OkYaI_u0FTzgvUvwDMllnIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532306241</pqid></control><display><type>article</type><title>Decentralized Proximal Gradient Algorithms With Linear Convergence Rates</title><source>IEEE Electronic Library (IEL)</source><creator>Alghunaim, Sulaiman A. ; Ryu, Ernest K. ; Yuan, Kun ; Sayed, Ali H.</creator><creatorcontrib>Alghunaim, Sulaiman A. ; Ryu, Ernest K. ; Yuan, Kun ; Sayed, Ali H.</creatorcontrib><description>This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2020.3009363</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Convergence ; Convex functions ; Cost function ; Decentralized optimization ; diffusion ; Electronic mail ; gradient tracking ; linear convergence ; Multiagent systems ; Optimization ; proximal gradient algorithms ; Symmetric matrices ; unified decentralized algorithm</subject><ispartof>IEEE transactions on automatic control, 2021-06, Vol.66 (6), p.2787-2794</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-50af50f9d760fe5dce263033d4db083bc5e7fafe97f787e85770ab23bdfbecbc3</citedby><cites>FETCH-LOGICAL-c338t-50af50f9d760fe5dce263033d4db083bc5e7fafe97f787e85770ab23bdfbecbc3</cites><orcidid>0000-0002-5125-5519 ; 0000-0001-5212-7474 ; 0000-0001-8394-8187 ; 0000-0001-6820-9095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9141196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9141196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alghunaim, Sulaiman A.</creatorcontrib><creatorcontrib>Ryu, Ernest K.</creatorcontrib><creatorcontrib>Yuan, Kun</creatorcontrib><creatorcontrib>Sayed, Ali H.</creatorcontrib><title>Decentralized Proximal Gradient Algorithms With Linear Convergence Rates</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Convergence</subject><subject>Convex functions</subject><subject>Cost function</subject><subject>Decentralized optimization</subject><subject>diffusion</subject><subject>Electronic mail</subject><subject>gradient tracking</subject><subject>linear convergence</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>proximal gradient algorithms</subject><subject>Symmetric matrices</subject><subject>unified decentralized algorithm</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59TZnWw-jiVqKxQUqXhcNpvZmpImdTcV9a93S4unxzDvzfB-jF1zmHAOxd1yWk4ECJggQIEpnrARlzKPhRR4ykYAPI8Lkafn7ML7dRjTJOEjNr8nQ93gdNv8Uh29uP672eg2mjldN2ERTdtV75rhY-Oj9yDRoulIu6jsuy9yK-oMRa96IH_JzqxuPV0ddczeHh-W5TxePM-eyukiNoj5EEvQVoIt6iwFS7I2JFIExDqpK8ixMpIyqy0Vmc3yjHKZZaArgVVtKzKVwTG7Pdzduv5zR35Q637nuvBSCYkCIRUJDy44uIzrvXdk1daFXu5HcVB7XirwUnte6sgrRG4OkYaI_u0FTzgvUvwDMllnIA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Alghunaim, Sulaiman A.</creator><creator>Ryu, Ernest K.</creator><creator>Yuan, Kun</creator><creator>Sayed, Ali H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5125-5519</orcidid><orcidid>https://orcid.org/0000-0001-5212-7474</orcidid><orcidid>https://orcid.org/0000-0001-8394-8187</orcidid><orcidid>https://orcid.org/0000-0001-6820-9095</orcidid></search><sort><creationdate>20210601</creationdate><title>Decentralized Proximal Gradient Algorithms With Linear Convergence Rates</title><author>Alghunaim, Sulaiman A. ; Ryu, Ernest K. ; Yuan, Kun ; Sayed, Ali H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-50af50f9d760fe5dce263033d4db083bc5e7fafe97f787e85770ab23bdfbecbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Convergence</topic><topic>Convex functions</topic><topic>Cost function</topic><topic>Decentralized optimization</topic><topic>diffusion</topic><topic>Electronic mail</topic><topic>gradient tracking</topic><topic>linear convergence</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>proximal gradient algorithms</topic><topic>Symmetric matrices</topic><topic>unified decentralized algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alghunaim, Sulaiman A.</creatorcontrib><creatorcontrib>Ryu, Ernest K.</creatorcontrib><creatorcontrib>Yuan, Kun</creatorcontrib><creatorcontrib>Sayed, Ali H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alghunaim, Sulaiman A.</au><au>Ryu, Ernest K.</au><au>Yuan, Kun</au><au>Sayed, Ali H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Proximal Gradient Algorithms With Linear Convergence Rates</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>66</volume><issue>6</issue><spage>2787</spage><epage>2794</epage><pages>2787-2794</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2020.3009363</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5125-5519</orcidid><orcidid>https://orcid.org/0000-0001-5212-7474</orcidid><orcidid>https://orcid.org/0000-0001-8394-8187</orcidid><orcidid>https://orcid.org/0000-0001-6820-9095</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2021-06, Vol.66 (6), p.2787-2794 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_9141196 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation algorithms Convergence Convex functions Cost function Decentralized optimization diffusion Electronic mail gradient tracking linear convergence Multiagent systems Optimization proximal gradient algorithms Symmetric matrices unified decentralized algorithm |
title | Decentralized Proximal Gradient Algorithms With Linear Convergence Rates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Proximal%20Gradient%20Algorithms%20With%20Linear%20Convergence%20Rates&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Alghunaim,%20Sulaiman%20A.&rft.date=2021-06-01&rft.volume=66&rft.issue=6&rft.spage=2787&rft.epage=2794&rft.pages=2787-2794&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2020.3009363&rft_dat=%3Cproquest_RIE%3E2532306241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532306241&rft_id=info:pmid/&rft_ieee_id=9141196&rfr_iscdi=true |