Decentralized Proximal Gradient Algorithms With Linear Convergence Rates

This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2021-06, Vol.66 (6), p.2787-2794
Hauptverfasser: Alghunaim, Sulaiman A., Ryu, Ernest K., Yuan, Kun, Sayed, Ali H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2794
container_issue 6
container_start_page 2787
container_title IEEE transactions on automatic control
container_volume 66
creator Alghunaim, Sulaiman A.
Ryu, Ernest K.
Yuan, Kun
Sayed, Ali H.
description This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms.
doi_str_mv 10.1109/TAC.2020.3009363
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9141196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9141196</ieee_id><sourcerecordid>2532306241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-50af50f9d760fe5dce263033d4db083bc5e7fafe97f787e85770ab23bdfbecbc3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59TZnWw-jiVqKxQUqXhcNpvZmpImdTcV9a93S4unxzDvzfB-jF1zmHAOxd1yWk4ECJggQIEpnrARlzKPhRR4ykYAPI8Lkafn7ML7dRjTJOEjNr8nQ93gdNv8Uh29uP672eg2mjldN2ERTdtV75rhY-Oj9yDRoulIu6jsuy9yK-oMRa96IH_JzqxuPV0ddczeHh-W5TxePM-eyukiNoj5EEvQVoIt6iwFS7I2JFIExDqpK8ixMpIyqy0Vmc3yjHKZZaArgVVtKzKVwTG7Pdzduv5zR35Q637nuvBSCYkCIRUJDy44uIzrvXdk1daFXu5HcVB7XirwUnte6sgrRG4OkYaI_u0FTzgvUvwDMllnIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532306241</pqid></control><display><type>article</type><title>Decentralized Proximal Gradient Algorithms With Linear Convergence Rates</title><source>IEEE Electronic Library (IEL)</source><creator>Alghunaim, Sulaiman A. ; Ryu, Ernest K. ; Yuan, Kun ; Sayed, Ali H.</creator><creatorcontrib>Alghunaim, Sulaiman A. ; Ryu, Ernest K. ; Yuan, Kun ; Sayed, Ali H.</creatorcontrib><description>This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2020.3009363</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Convergence ; Convex functions ; Cost function ; Decentralized optimization ; diffusion ; Electronic mail ; gradient tracking ; linear convergence ; Multiagent systems ; Optimization ; proximal gradient algorithms ; Symmetric matrices ; unified decentralized algorithm</subject><ispartof>IEEE transactions on automatic control, 2021-06, Vol.66 (6), p.2787-2794</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-50af50f9d760fe5dce263033d4db083bc5e7fafe97f787e85770ab23bdfbecbc3</citedby><cites>FETCH-LOGICAL-c338t-50af50f9d760fe5dce263033d4db083bc5e7fafe97f787e85770ab23bdfbecbc3</cites><orcidid>0000-0002-5125-5519 ; 0000-0001-5212-7474 ; 0000-0001-8394-8187 ; 0000-0001-6820-9095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9141196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9141196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alghunaim, Sulaiman A.</creatorcontrib><creatorcontrib>Ryu, Ernest K.</creatorcontrib><creatorcontrib>Yuan, Kun</creatorcontrib><creatorcontrib>Sayed, Ali H.</creatorcontrib><title>Decentralized Proximal Gradient Algorithms With Linear Convergence Rates</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Convergence</subject><subject>Convex functions</subject><subject>Cost function</subject><subject>Decentralized optimization</subject><subject>diffusion</subject><subject>Electronic mail</subject><subject>gradient tracking</subject><subject>linear convergence</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>proximal gradient algorithms</subject><subject>Symmetric matrices</subject><subject>unified decentralized algorithm</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59TZnWw-jiVqKxQUqXhcNpvZmpImdTcV9a93S4unxzDvzfB-jF1zmHAOxd1yWk4ECJggQIEpnrARlzKPhRR4ykYAPI8Lkafn7ML7dRjTJOEjNr8nQ93gdNv8Uh29uP672eg2mjldN2ERTdtV75rhY-Oj9yDRoulIu6jsuy9yK-oMRa96IH_JzqxuPV0ddczeHh-W5TxePM-eyukiNoj5EEvQVoIt6iwFS7I2JFIExDqpK8ixMpIyqy0Vmc3yjHKZZaArgVVtKzKVwTG7Pdzduv5zR35Q637nuvBSCYkCIRUJDy44uIzrvXdk1daFXu5HcVB7XirwUnte6sgrRG4OkYaI_u0FTzgvUvwDMllnIA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Alghunaim, Sulaiman A.</creator><creator>Ryu, Ernest K.</creator><creator>Yuan, Kun</creator><creator>Sayed, Ali H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5125-5519</orcidid><orcidid>https://orcid.org/0000-0001-5212-7474</orcidid><orcidid>https://orcid.org/0000-0001-8394-8187</orcidid><orcidid>https://orcid.org/0000-0001-6820-9095</orcidid></search><sort><creationdate>20210601</creationdate><title>Decentralized Proximal Gradient Algorithms With Linear Convergence Rates</title><author>Alghunaim, Sulaiman A. ; Ryu, Ernest K. ; Yuan, Kun ; Sayed, Ali H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-50af50f9d760fe5dce263033d4db083bc5e7fafe97f787e85770ab23bdfbecbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Convergence</topic><topic>Convex functions</topic><topic>Cost function</topic><topic>Decentralized optimization</topic><topic>diffusion</topic><topic>Electronic mail</topic><topic>gradient tracking</topic><topic>linear convergence</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>proximal gradient algorithms</topic><topic>Symmetric matrices</topic><topic>unified decentralized algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alghunaim, Sulaiman A.</creatorcontrib><creatorcontrib>Ryu, Ernest K.</creatorcontrib><creatorcontrib>Yuan, Kun</creatorcontrib><creatorcontrib>Sayed, Ali H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alghunaim, Sulaiman A.</au><au>Ryu, Ernest K.</au><au>Yuan, Kun</au><au>Sayed, Ali H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Proximal Gradient Algorithms With Linear Convergence Rates</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>66</volume><issue>6</issue><spage>2787</spage><epage>2794</epage><pages>2787-2794</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2020.3009363</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5125-5519</orcidid><orcidid>https://orcid.org/0000-0001-5212-7474</orcidid><orcidid>https://orcid.org/0000-0001-8394-8187</orcidid><orcidid>https://orcid.org/0000-0001-6820-9095</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2021-06, Vol.66 (6), p.2787-2794
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_9141196
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Convergence
Convex functions
Cost function
Decentralized optimization
diffusion
Electronic mail
gradient tracking
linear convergence
Multiagent systems
Optimization
proximal gradient algorithms
Symmetric matrices
unified decentralized algorithm
title Decentralized Proximal Gradient Algorithms With Linear Convergence Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Proximal%20Gradient%20Algorithms%20With%20Linear%20Convergence%20Rates&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Alghunaim,%20Sulaiman%20A.&rft.date=2021-06-01&rft.volume=66&rft.issue=6&rft.spage=2787&rft.epage=2794&rft.pages=2787-2794&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2020.3009363&rft_dat=%3Cproquest_RIE%3E2532306241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532306241&rft_id=info:pmid/&rft_ieee_id=9141196&rfr_iscdi=true