Efficient Evaluation of Remaining Wall Thickness in Corroded Water Pipes Using Pulsed Eddy Current Data
In order to analyse failures of an ageing water pipe, some methods such as the loss-of-section require remaining wall thickness (RWT) along the pipe to be fully known, which can be measured by the magnetism based non-destructive evaluation sensors though they are practically slow due to the magnetic...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2020-12, Vol.20 (23), p.14465-14473 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to analyse failures of an ageing water pipe, some methods such as the loss-of-section require remaining wall thickness (RWT) along the pipe to be fully known, which can be measured by the magnetism based non-destructive evaluation sensors though they are practically slow due to the magnetic penetrating process. That is, fully measuring RWT at every location in a water pipe is not really practical if RWT inspection causes disruption of water supply to customers. Thus, this paper proposes a new data prediction approach that can increase amount of RWT data of a corroded water pipe collected in a given period of time by only measuring RWT on a part (e.g. 20%) of the total pipe surface area and then employing the measurements to predict RWT at unmeasured area. It is proposed to utilize a marginal distribution to convert the non-Gaussian RWT measurements to the standard normally distributed data, which can then be input into a 3-dimensional Gaussian process model for efficiently predicting RWT at unmeasured locations on the pipe. The proposed approach was implemented in two real-life in-service pipes, and the obtained results demonstrate its practicality. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2020.3007868 |