Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network
The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segme...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.122811-122825 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122825 |
---|---|
container_issue | |
container_start_page | 122811 |
container_title | IEEE access |
container_volume | 8 |
creator | Jiang, Yun Cao, Simin Tao, Shengxin Zhang, Hai |
description | The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel & Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively. |
doi_str_mv | 10.1109/ACCESS.2020.3007512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9133532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133532</ieee_id><doaj_id>oai_doaj_org_article_941831f8585a4360aa029d3b3a9a0765</doaj_id><sourcerecordid>2454642838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7210aba111b40171086c3622ffcb84437564568b1757ed6223358228e3b147ed3</originalsourceid><addsrcrecordid>eNpNUUFOwzAQjBBIIOAFXCJxTvF6bcc5lqhApQKHwNlyUgelhLrYDojf4zSowpednd0ZazVJcgVkBkCKm3lZLqpqRgklMyQk50CPkjMKosiQozj-h0-TS-83JD4ZKZ6fJS_Ve7dNV8Z3dptW5u3DbIMOY3OrvVmnETwOfeiyqtG9SechxIVxXNrtl-2HEes-fTKD25fwbd37RXLS6t6by796nrzeLV7Kh2z1fL8s56usYUSGLKdAdK0BoGYEciBSNCgobdumloxhzgXjQtaQ89ys4wCRS0qlwRpYZPA8WU6-a6s3aue6D-1-lNWd2hPWvSntQtf0RhUMJEIrueSaoSBaE1qssUZdaJILHr2uJ6-ds5-D8UFt7ODibV5RxplgVKKMWzhtNc5670x7-BWIGtNQUxpqTEP9pRFVV5OqM8YcFAXEe5DiL9ESguY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454642838</pqid></control><display><type>article</type><title>Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jiang, Yun ; Cao, Simin ; Tao, Shengxin ; Zhang, Hai</creator><creatorcontrib>Jiang, Yun ; Cao, Simin ; Tao, Shengxin ; Zhang, Hai</creatorcontrib><description>The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel & Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3007512</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; attention mechanism ; Biomedical imaging ; Convolutional neural networks ; Deep convolutional neural network ; Image enhancement ; Image segmentation ; Lesions ; Medical imaging ; Melanoma ; Modules ; multi-scale ; Skin ; skin lesion segmentation ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.122811-122825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7210aba111b40171086c3622ffcb84437564568b1757ed6223358228e3b147ed3</citedby><cites>FETCH-LOGICAL-c408t-7210aba111b40171086c3622ffcb84437564568b1757ed6223358228e3b147ed3</cites><orcidid>0000-0002-3034-6729 ; 0000-0003-2238-0545 ; 0000-0001-6040-9113 ; 0000-0003-0947-8310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133532$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jiang, Yun</creatorcontrib><creatorcontrib>Cao, Simin</creatorcontrib><creatorcontrib>Tao, Shengxin</creatorcontrib><creatorcontrib>Zhang, Hai</creatorcontrib><title>Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel & Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively.</description><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>Biomedical imaging</subject><subject>Convolutional neural networks</subject><subject>Deep convolutional neural network</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Modules</subject><subject>multi-scale</subject><subject>Skin</subject><subject>skin lesion segmentation</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUFOwzAQjBBIIOAFXCJxTvF6bcc5lqhApQKHwNlyUgelhLrYDojf4zSowpednd0ZazVJcgVkBkCKm3lZLqpqRgklMyQk50CPkjMKosiQozj-h0-TS-83JD4ZKZ6fJS_Ve7dNV8Z3dptW5u3DbIMOY3OrvVmnETwOfeiyqtG9SechxIVxXNrtl-2HEes-fTKD25fwbd37RXLS6t6by796nrzeLV7Kh2z1fL8s56usYUSGLKdAdK0BoGYEciBSNCgobdumloxhzgXjQtaQ89ys4wCRS0qlwRpYZPA8WU6-a6s3aue6D-1-lNWd2hPWvSntQtf0RhUMJEIrueSaoSBaE1qssUZdaJILHr2uJ6-ds5-D8UFt7ODibV5RxplgVKKMWzhtNc5670x7-BWIGtNQUxpqTEP9pRFVV5OqM8YcFAXEe5DiL9ESguY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jiang, Yun</creator><creator>Cao, Simin</creator><creator>Tao, Shengxin</creator><creator>Zhang, Hai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3034-6729</orcidid><orcidid>https://orcid.org/0000-0003-2238-0545</orcidid><orcidid>https://orcid.org/0000-0001-6040-9113</orcidid><orcidid>https://orcid.org/0000-0003-0947-8310</orcidid></search><sort><creationdate>2020</creationdate><title>Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network</title><author>Jiang, Yun ; Cao, Simin ; Tao, Shengxin ; Zhang, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7210aba111b40171086c3622ffcb84437564568b1757ed6223358228e3b147ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>Biomedical imaging</topic><topic>Convolutional neural networks</topic><topic>Deep convolutional neural network</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Modules</topic><topic>multi-scale</topic><topic>Skin</topic><topic>skin lesion segmentation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yun</creatorcontrib><creatorcontrib>Cao, Simin</creatorcontrib><creatorcontrib>Tao, Shengxin</creatorcontrib><creatorcontrib>Zhang, Hai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yun</au><au>Cao, Simin</au><au>Tao, Shengxin</au><au>Zhang, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>122811</spage><epage>122825</epage><pages>122811-122825</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel & Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3007512</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3034-6729</orcidid><orcidid>https://orcid.org/0000-0003-2238-0545</orcidid><orcidid>https://orcid.org/0000-0001-6040-9113</orcidid><orcidid>https://orcid.org/0000-0003-0947-8310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.122811-122825 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9133532 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks attention mechanism Biomedical imaging Convolutional neural networks Deep convolutional neural network Image enhancement Image segmentation Lesions Medical imaging Melanoma Modules multi-scale Skin skin lesion segmentation Task analysis |
title | Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin%20Lesion%20Segmentation%20Based%20on%20Multi-Scale%20Attention%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Jiang,%20Yun&rft.date=2020&rft.volume=8&rft.spage=122811&rft.epage=122825&rft.pages=122811-122825&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3007512&rft_dat=%3Cproquest_ieee_%3E2454642838%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454642838&rft_id=info:pmid/&rft_ieee_id=9133532&rft_doaj_id=oai_doaj_org_article_941831f8585a4360aa029d3b3a9a0765&rfr_iscdi=true |