Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network

The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.122811-122825
Hauptverfasser: Jiang, Yun, Cao, Simin, Tao, Shengxin, Zhang, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122825
container_issue
container_start_page 122811
container_title IEEE access
container_volume 8
creator Jiang, Yun
Cao, Simin
Tao, Shengxin
Zhang, Hai
description The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel & Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively.
doi_str_mv 10.1109/ACCESS.2020.3007512
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9133532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133532</ieee_id><doaj_id>oai_doaj_org_article_941831f8585a4360aa029d3b3a9a0765</doaj_id><sourcerecordid>2454642838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7210aba111b40171086c3622ffcb84437564568b1757ed6223358228e3b147ed3</originalsourceid><addsrcrecordid>eNpNUUFOwzAQjBBIIOAFXCJxTvF6bcc5lqhApQKHwNlyUgelhLrYDojf4zSowpednd0ZazVJcgVkBkCKm3lZLqpqRgklMyQk50CPkjMKosiQozj-h0-TS-83JD4ZKZ6fJS_Ve7dNV8Z3dptW5u3DbIMOY3OrvVmnETwOfeiyqtG9SechxIVxXNrtl-2HEes-fTKD25fwbd37RXLS6t6by796nrzeLV7Kh2z1fL8s56usYUSGLKdAdK0BoGYEciBSNCgobdumloxhzgXjQtaQ89ys4wCRS0qlwRpYZPA8WU6-a6s3aue6D-1-lNWd2hPWvSntQtf0RhUMJEIrueSaoSBaE1qssUZdaJILHr2uJ6-ds5-D8UFt7ODibV5RxplgVKKMWzhtNc5670x7-BWIGtNQUxpqTEP9pRFVV5OqM8YcFAXEe5DiL9ESguY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454642838</pqid></control><display><type>article</type><title>Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jiang, Yun ; Cao, Simin ; Tao, Shengxin ; Zhang, Hai</creator><creatorcontrib>Jiang, Yun ; Cao, Simin ; Tao, Shengxin ; Zhang, Hai</creatorcontrib><description>The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel &amp; Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3007512</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; attention mechanism ; Biomedical imaging ; Convolutional neural networks ; Deep convolutional neural network ; Image enhancement ; Image segmentation ; Lesions ; Medical imaging ; Melanoma ; Modules ; multi-scale ; Skin ; skin lesion segmentation ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.122811-122825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7210aba111b40171086c3622ffcb84437564568b1757ed6223358228e3b147ed3</citedby><cites>FETCH-LOGICAL-c408t-7210aba111b40171086c3622ffcb84437564568b1757ed6223358228e3b147ed3</cites><orcidid>0000-0002-3034-6729 ; 0000-0003-2238-0545 ; 0000-0001-6040-9113 ; 0000-0003-0947-8310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133532$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jiang, Yun</creatorcontrib><creatorcontrib>Cao, Simin</creatorcontrib><creatorcontrib>Tao, Shengxin</creatorcontrib><creatorcontrib>Zhang, Hai</creatorcontrib><title>Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel &amp; Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively.</description><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>Biomedical imaging</subject><subject>Convolutional neural networks</subject><subject>Deep convolutional neural network</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Modules</subject><subject>multi-scale</subject><subject>Skin</subject><subject>skin lesion segmentation</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUFOwzAQjBBIIOAFXCJxTvF6bcc5lqhApQKHwNlyUgelhLrYDojf4zSowpednd0ZazVJcgVkBkCKm3lZLqpqRgklMyQk50CPkjMKosiQozj-h0-TS-83JD4ZKZ6fJS_Ve7dNV8Z3dptW5u3DbIMOY3OrvVmnETwOfeiyqtG9SechxIVxXNrtl-2HEes-fTKD25fwbd37RXLS6t6by796nrzeLV7Kh2z1fL8s56usYUSGLKdAdK0BoGYEciBSNCgobdumloxhzgXjQtaQ89ys4wCRS0qlwRpYZPA8WU6-a6s3aue6D-1-lNWd2hPWvSntQtf0RhUMJEIrueSaoSBaE1qssUZdaJILHr2uJ6-ds5-D8UFt7ODibV5RxplgVKKMWzhtNc5670x7-BWIGtNQUxpqTEP9pRFVV5OqM8YcFAXEe5DiL9ESguY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jiang, Yun</creator><creator>Cao, Simin</creator><creator>Tao, Shengxin</creator><creator>Zhang, Hai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3034-6729</orcidid><orcidid>https://orcid.org/0000-0003-2238-0545</orcidid><orcidid>https://orcid.org/0000-0001-6040-9113</orcidid><orcidid>https://orcid.org/0000-0003-0947-8310</orcidid></search><sort><creationdate>2020</creationdate><title>Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network</title><author>Jiang, Yun ; Cao, Simin ; Tao, Shengxin ; Zhang, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7210aba111b40171086c3622ffcb84437564568b1757ed6223358228e3b147ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>Biomedical imaging</topic><topic>Convolutional neural networks</topic><topic>Deep convolutional neural network</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Modules</topic><topic>multi-scale</topic><topic>Skin</topic><topic>skin lesion segmentation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yun</creatorcontrib><creatorcontrib>Cao, Simin</creatorcontrib><creatorcontrib>Tao, Shengxin</creatorcontrib><creatorcontrib>Zhang, Hai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yun</au><au>Cao, Simin</au><au>Tao, Shengxin</au><au>Zhang, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>122811</spage><epage>122825</epage><pages>122811-122825</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel &amp; Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3007512</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3034-6729</orcidid><orcidid>https://orcid.org/0000-0003-2238-0545</orcidid><orcidid>https://orcid.org/0000-0001-6040-9113</orcidid><orcidid>https://orcid.org/0000-0003-0947-8310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.122811-122825
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9133532
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
attention mechanism
Biomedical imaging
Convolutional neural networks
Deep convolutional neural network
Image enhancement
Image segmentation
Lesions
Medical imaging
Melanoma
Modules
multi-scale
Skin
skin lesion segmentation
Task analysis
title Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin%20Lesion%20Segmentation%20Based%20on%20Multi-Scale%20Attention%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Jiang,%20Yun&rft.date=2020&rft.volume=8&rft.spage=122811&rft.epage=122825&rft.pages=122811-122825&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3007512&rft_dat=%3Cproquest_ieee_%3E2454642838%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454642838&rft_id=info:pmid/&rft_ieee_id=9133532&rft_doaj_id=oai_doaj_org_article_941831f8585a4360aa029d3b3a9a0765&rfr_iscdi=true