An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks

Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2021, Vol.23, p.1951-1961
Hauptverfasser: Zhong, Xin, Huang, Pei-Chi, Mastorakis, Spyridon, Shih, Frank Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1961
container_issue
container_start_page 1951
container_title IEEE transactions on multimedia
container_volume 23
creator Zhong, Xin
Huang, Pei-Chi
Mastorakis, Spyridon
Shih, Frank Y.
description Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.
doi_str_mv 10.1109/TMM.2020.3006415
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9133124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133124</ieee_id><sourcerecordid>2544952894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-eb64b4ce084f50a13119f77174446002c373e2e7f0db9ad8af56bf1ea968696c3</originalsourceid><addsrcrecordid>eNo9kMtLw0AQhxdRsFbvgpcFz6mzr2z2WOur0FrQisdlk0xqX0ndTRD_e7e0eJph-H4zzEfINYMBY2Du5tPpgAOHgQBIJVMnpMeMZAmA1qexVxwSwxmck4sQVgBMKtA9MhvWdNi1zda1WFJXl_StybvQ0vHWLZB-xrHfOr9e1gv6XnzhFum9CxFtavqAuKOv2Hm3iaX9afw6XJKzym0CXh1rn3w8Pc5HL8lk9jweDSdJIZRuE8xTmcsCIZOVAscEY6bSmmkpZQrAC6EFctQVlLlxZeYqleYVQ2fSLDVpIfrk9rB355vvDkNrV03n63jSciWlUTwzMlJwoArfhOCxsju_jO_8WgZ2r81GbXavzR61xcjNIbJExH_cMCEYl-IPivZnOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544952894</pqid></control><display><type>article</type><title>An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhong, Xin ; Huang, Pei-Chi ; Mastorakis, Spyridon ; Shih, Frank Y.</creator><creatorcontrib>Zhong, Xin ; Huang, Pei-Chi ; Mastorakis, Spyridon ; Shih, Frank Y.</creatorcontrib><description>Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3006415</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Annotations ; Artificial neural networks ; Automation ; Blindness ; convolutional neural networks ; Deep learning ; Digital imaging ; Digital watermarking ; Embedding ; Fitting ; Heuristic algorithms ; Image watermarking ; Knowledge engineering ; Machine learning ; Neural networks ; Refining ; Robustness ; Watermarking</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.1951-1961</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-eb64b4ce084f50a13119f77174446002c373e2e7f0db9ad8af56bf1ea968696c3</citedby><cites>FETCH-LOGICAL-c357t-eb64b4ce084f50a13119f77174446002c373e2e7f0db9ad8af56bf1ea968696c3</cites><orcidid>0000-0001-8339-9245 ; 0000-0002-8498-4718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9133124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Huang, Pei-Chi</creatorcontrib><creatorcontrib>Mastorakis, Spyridon</creatorcontrib><creatorcontrib>Shih, Frank Y.</creatorcontrib><title>An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Blindness</subject><subject>convolutional neural networks</subject><subject>Deep learning</subject><subject>Digital imaging</subject><subject>Digital watermarking</subject><subject>Embedding</subject><subject>Fitting</subject><subject>Heuristic algorithms</subject><subject>Image watermarking</subject><subject>Knowledge engineering</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Refining</subject><subject>Robustness</subject><subject>Watermarking</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQhxdRsFbvgpcFz6mzr2z2WOur0FrQisdlk0xqX0ndTRD_e7e0eJph-H4zzEfINYMBY2Du5tPpgAOHgQBIJVMnpMeMZAmA1qexVxwSwxmck4sQVgBMKtA9MhvWdNi1zda1WFJXl_StybvQ0vHWLZB-xrHfOr9e1gv6XnzhFum9CxFtavqAuKOv2Hm3iaX9afw6XJKzym0CXh1rn3w8Pc5HL8lk9jweDSdJIZRuE8xTmcsCIZOVAscEY6bSmmkpZQrAC6EFctQVlLlxZeYqleYVQ2fSLDVpIfrk9rB355vvDkNrV03n63jSciWlUTwzMlJwoArfhOCxsju_jO_8WgZ2r81GbXavzR61xcjNIbJExH_cMCEYl-IPivZnOA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhong, Xin</creator><creator>Huang, Pei-Chi</creator><creator>Mastorakis, Spyridon</creator><creator>Shih, Frank Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8339-9245</orcidid><orcidid>https://orcid.org/0000-0002-8498-4718</orcidid></search><sort><creationdate>2021</creationdate><title>An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks</title><author>Zhong, Xin ; Huang, Pei-Chi ; Mastorakis, Spyridon ; Shih, Frank Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-eb64b4ce084f50a13119f77174446002c373e2e7f0db9ad8af56bf1ea968696c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Blindness</topic><topic>convolutional neural networks</topic><topic>Deep learning</topic><topic>Digital imaging</topic><topic>Digital watermarking</topic><topic>Embedding</topic><topic>Fitting</topic><topic>Heuristic algorithms</topic><topic>Image watermarking</topic><topic>Knowledge engineering</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Refining</topic><topic>Robustness</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Huang, Pei-Chi</creatorcontrib><creatorcontrib>Mastorakis, Spyridon</creatorcontrib><creatorcontrib>Shih, Frank Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhong, Xin</au><au>Huang, Pei-Chi</au><au>Mastorakis, Spyridon</au><au>Shih, Frank Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>1951</spage><epage>1961</epage><pages>1951-1961</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3006415</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8339-9245</orcidid><orcidid>https://orcid.org/0000-0002-8498-4718</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2021, Vol.23, p.1951-1961
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_9133124
source IEEE Electronic Library (IEL)
subjects Algorithms
Annotations
Artificial neural networks
Automation
Blindness
convolutional neural networks
Deep learning
Digital imaging
Digital watermarking
Embedding
Fitting
Heuristic algorithms
Image watermarking
Knowledge engineering
Machine learning
Neural networks
Refining
Robustness
Watermarking
title An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automated%20and%20Robust%20Image%20Watermarking%20Scheme%20Based%20on%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhong,%20Xin&rft.date=2021&rft.volume=23&rft.spage=1951&rft.epage=1961&rft.pages=1951-1961&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3006415&rft_dat=%3Cproquest_RIE%3E2544952894%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544952894&rft_id=info:pmid/&rft_ieee_id=9133124&rfr_iscdi=true