An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks
Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-base...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2021, Vol.23, p.1951-1961 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1961 |
---|---|
container_issue | |
container_start_page | 1951 |
container_title | IEEE transactions on multimedia |
container_volume | 23 |
creator | Zhong, Xin Huang, Pei-Chi Mastorakis, Spyridon Shih, Frank Y. |
description | Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme. |
doi_str_mv | 10.1109/TMM.2020.3006415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9133124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133124</ieee_id><sourcerecordid>2544952894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-eb64b4ce084f50a13119f77174446002c373e2e7f0db9ad8af56bf1ea968696c3</originalsourceid><addsrcrecordid>eNo9kMtLw0AQhxdRsFbvgpcFz6mzr2z2WOur0FrQisdlk0xqX0ndTRD_e7e0eJph-H4zzEfINYMBY2Du5tPpgAOHgQBIJVMnpMeMZAmA1qexVxwSwxmck4sQVgBMKtA9MhvWdNi1zda1WFJXl_StybvQ0vHWLZB-xrHfOr9e1gv6XnzhFum9CxFtavqAuKOv2Hm3iaX9afw6XJKzym0CXh1rn3w8Pc5HL8lk9jweDSdJIZRuE8xTmcsCIZOVAscEY6bSmmkpZQrAC6EFctQVlLlxZeYqleYVQ2fSLDVpIfrk9rB355vvDkNrV03n63jSciWlUTwzMlJwoArfhOCxsju_jO_8WgZ2r81GbXavzR61xcjNIbJExH_cMCEYl-IPivZnOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544952894</pqid></control><display><type>article</type><title>An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhong, Xin ; Huang, Pei-Chi ; Mastorakis, Spyridon ; Shih, Frank Y.</creator><creatorcontrib>Zhong, Xin ; Huang, Pei-Chi ; Mastorakis, Spyridon ; Shih, Frank Y.</creatorcontrib><description>Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3006415</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Annotations ; Artificial neural networks ; Automation ; Blindness ; convolutional neural networks ; Deep learning ; Digital imaging ; Digital watermarking ; Embedding ; Fitting ; Heuristic algorithms ; Image watermarking ; Knowledge engineering ; Machine learning ; Neural networks ; Refining ; Robustness ; Watermarking</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.1951-1961</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-eb64b4ce084f50a13119f77174446002c373e2e7f0db9ad8af56bf1ea968696c3</citedby><cites>FETCH-LOGICAL-c357t-eb64b4ce084f50a13119f77174446002c373e2e7f0db9ad8af56bf1ea968696c3</cites><orcidid>0000-0001-8339-9245 ; 0000-0002-8498-4718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9133124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Huang, Pei-Chi</creatorcontrib><creatorcontrib>Mastorakis, Spyridon</creatorcontrib><creatorcontrib>Shih, Frank Y.</creatorcontrib><title>An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Blindness</subject><subject>convolutional neural networks</subject><subject>Deep learning</subject><subject>Digital imaging</subject><subject>Digital watermarking</subject><subject>Embedding</subject><subject>Fitting</subject><subject>Heuristic algorithms</subject><subject>Image watermarking</subject><subject>Knowledge engineering</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Refining</subject><subject>Robustness</subject><subject>Watermarking</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQhxdRsFbvgpcFz6mzr2z2WOur0FrQisdlk0xqX0ndTRD_e7e0eJph-H4zzEfINYMBY2Du5tPpgAOHgQBIJVMnpMeMZAmA1qexVxwSwxmck4sQVgBMKtA9MhvWdNi1zda1WFJXl_StybvQ0vHWLZB-xrHfOr9e1gv6XnzhFum9CxFtavqAuKOv2Hm3iaX9afw6XJKzym0CXh1rn3w8Pc5HL8lk9jweDSdJIZRuE8xTmcsCIZOVAscEY6bSmmkpZQrAC6EFctQVlLlxZeYqleYVQ2fSLDVpIfrk9rB355vvDkNrV03n63jSciWlUTwzMlJwoArfhOCxsju_jO_8WgZ2r81GbXavzR61xcjNIbJExH_cMCEYl-IPivZnOA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhong, Xin</creator><creator>Huang, Pei-Chi</creator><creator>Mastorakis, Spyridon</creator><creator>Shih, Frank Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8339-9245</orcidid><orcidid>https://orcid.org/0000-0002-8498-4718</orcidid></search><sort><creationdate>2021</creationdate><title>An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks</title><author>Zhong, Xin ; Huang, Pei-Chi ; Mastorakis, Spyridon ; Shih, Frank Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-eb64b4ce084f50a13119f77174446002c373e2e7f0db9ad8af56bf1ea968696c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Blindness</topic><topic>convolutional neural networks</topic><topic>Deep learning</topic><topic>Digital imaging</topic><topic>Digital watermarking</topic><topic>Embedding</topic><topic>Fitting</topic><topic>Heuristic algorithms</topic><topic>Image watermarking</topic><topic>Knowledge engineering</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Refining</topic><topic>Robustness</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Huang, Pei-Chi</creatorcontrib><creatorcontrib>Mastorakis, Spyridon</creatorcontrib><creatorcontrib>Shih, Frank Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhong, Xin</au><au>Huang, Pei-Chi</au><au>Mastorakis, Spyridon</au><au>Shih, Frank Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>1951</spage><epage>1961</epage><pages>1951-1961</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3006415</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8339-9245</orcidid><orcidid>https://orcid.org/0000-0002-8498-4718</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2021, Vol.23, p.1951-1961 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_9133124 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Annotations Artificial neural networks Automation Blindness convolutional neural networks Deep learning Digital imaging Digital watermarking Embedding Fitting Heuristic algorithms Image watermarking Knowledge engineering Machine learning Neural networks Refining Robustness Watermarking |
title | An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automated%20and%20Robust%20Image%20Watermarking%20Scheme%20Based%20on%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhong,%20Xin&rft.date=2021&rft.volume=23&rft.spage=1951&rft.epage=1961&rft.pages=1951-1961&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3006415&rft_dat=%3Cproquest_RIE%3E2544952894%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544952894&rft_id=info:pmid/&rft_ieee_id=9133124&rfr_iscdi=true |