Convolutional multi-head self-attention on memory for aspect sentiment classification

This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network &#x0028 CMA-MemNet &#x0029 . This is an improved model based on memory networks, and makes it possible to extract more rich and complex semantic informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2020-07, Vol.7 (4), p.1038-1044
Hauptverfasser: Zhang, Yaojie, Xu, Bing, Zhao, Tiejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 4
container_start_page 1038
container_title IEEE/CAA journal of automatica sinica
container_volume 7
creator Zhang, Yaojie
Xu, Bing
Zhao, Tiejun
description This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network &#x0028 CMA-MemNet &#x0029 . This is an improved model based on memory networks, and makes it possible to extract more rich and complex semantic information from sequences and aspects. In order to fix the memory network&#x02BC s inability to capture context-related information on a word-level, we propose utilizing convolution to capture n-gram grammatical information. We use multi-head self-attention to make up for the problem where the memory network ignores the semantic information of the sequence itself. Meanwhile, unlike most recurrent neural network &#x0028 RNN &#x0029 long short term memory &#x0028 LSTM &#x0029 , gated recurrent unit &#x0028 GRU &#x0029 models, we retain the parallelism of the network. We experiment on the open datasets SemEval-2014 Task 4 and SemEval-2016 Task 6. Compared with some popular baseline methods, our model performs excellently.
doi_str_mv 10.1109/JAS.2020.1003243
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9128078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9128078</ieee_id><sourcerecordid>2419495941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b903f4a0184d08ef98121e7ea94b893d3fcfbf1d732e32ae0571cb10f863978b3</originalsourceid><addsrcrecordid>eNo9kElrwzAQhUVpoSHNvdCLoWeno8W2dAyhK4Ee2pyFbI-ogx2lklzIv69MQmCYhfnewDxC7iksKQX19LH6WjJgaQLgTPArMmOcqVyxSlxf-rK8JYsQdgBAWVGVSszIdu32f64fY-f2ps-GsY9d_oOmzQL2Njcx4n7aZSkGHJw_Ztb5zIQDNjExaTmklDW9CaGzXWMm-o7cWNMHXJzrnGxfnr_Xb_nm8_V9vdrkDWdlzGsF3AoDVIoWJFolKaNYoVGiloq33Da2trStOEPODEJR0aamYGXJVSVrPiePp7sH735HDFHv3OjTI0EzQZVQhRI0UXCiGu9C8Gj1wXeD8UdNQU_-6eSfnvzTZ_-S5OEk6RDxgivKJFSS_wPK1Gxi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419495941</pqid></control><display><type>article</type><title>Convolutional multi-head self-attention on memory for aspect sentiment classification</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yaojie ; Xu, Bing ; Zhao, Tiejun</creator><creatorcontrib>Zhang, Yaojie ; Xu, Bing ; Zhao, Tiejun</creatorcontrib><description><![CDATA[This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network &#x0028 CMA-MemNet &#x0029 . This is an improved model based on memory networks, and makes it possible to extract more rich and complex semantic information from sequences and aspects. In order to fix the memory network&#x02BC s inability to capture context-related information on a word-level, we propose utilizing convolution to capture n-gram grammatical information. We use multi-head self-attention to make up for the problem where the memory network ignores the semantic information of the sequence itself. Meanwhile, unlike most recurrent neural network &#x0028 RNN &#x0029 long short term memory &#x0028 LSTM &#x0029 , gated recurrent unit &#x0028 GRU &#x0029 models, we retain the parallelism of the network. We experiment on the open datasets SemEval-2014 Task 4 and SemEval-2016 Task 6. Compared with some popular baseline methods, our model performs excellently.]]></description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2020.1003243</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Classification ; Convolution ; Data mining ; Feature extraction ; Recurrent neural networks ; Semantics ; Sentiment analysis ; Sequences ; Short term ; Task analysis</subject><ispartof>IEEE/CAA journal of automatica sinica, 2020-07, Vol.7 (4), p.1038-1044</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-b903f4a0184d08ef98121e7ea94b893d3fcfbf1d732e32ae0571cb10f863978b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9128078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9128078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yaojie</creatorcontrib><creatorcontrib>Xu, Bing</creatorcontrib><creatorcontrib>Zhao, Tiejun</creatorcontrib><title>Convolutional multi-head self-attention on memory for aspect sentiment classification</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description><![CDATA[This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network &#x0028 CMA-MemNet &#x0029 . This is an improved model based on memory networks, and makes it possible to extract more rich and complex semantic information from sequences and aspects. In order to fix the memory network&#x02BC s inability to capture context-related information on a word-level, we propose utilizing convolution to capture n-gram grammatical information. We use multi-head self-attention to make up for the problem where the memory network ignores the semantic information of the sequence itself. Meanwhile, unlike most recurrent neural network &#x0028 RNN &#x0029 long short term memory &#x0028 LSTM &#x0029 , gated recurrent unit &#x0028 GRU &#x0029 models, we retain the parallelism of the network. We experiment on the open datasets SemEval-2014 Task 4 and SemEval-2016 Task 6. Compared with some popular baseline methods, our model performs excellently.]]></description><subject>Classification</subject><subject>Convolution</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Recurrent neural networks</subject><subject>Semantics</subject><subject>Sentiment analysis</subject><subject>Sequences</subject><subject>Short term</subject><subject>Task analysis</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElrwzAQhUVpoSHNvdCLoWeno8W2dAyhK4Ee2pyFbI-ogx2lklzIv69MQmCYhfnewDxC7iksKQX19LH6WjJgaQLgTPArMmOcqVyxSlxf-rK8JYsQdgBAWVGVSszIdu32f64fY-f2ps-GsY9d_oOmzQL2Njcx4n7aZSkGHJw_Ztb5zIQDNjExaTmklDW9CaGzXWMm-o7cWNMHXJzrnGxfnr_Xb_nm8_V9vdrkDWdlzGsF3AoDVIoWJFolKaNYoVGiloq33Da2trStOEPODEJR0aamYGXJVSVrPiePp7sH735HDFHv3OjTI0EzQZVQhRI0UXCiGu9C8Gj1wXeD8UdNQU_-6eSfnvzTZ_-S5OEk6RDxgivKJFSS_wPK1Gxi</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhang, Yaojie</creator><creator>Xu, Bing</creator><creator>Zhao, Tiejun</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200701</creationdate><title>Convolutional multi-head self-attention on memory for aspect sentiment classification</title><author>Zhang, Yaojie ; Xu, Bing ; Zhao, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b903f4a0184d08ef98121e7ea94b893d3fcfbf1d732e32ae0571cb10f863978b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Recurrent neural networks</topic><topic>Semantics</topic><topic>Sentiment analysis</topic><topic>Sequences</topic><topic>Short term</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yaojie</creatorcontrib><creatorcontrib>Xu, Bing</creatorcontrib><creatorcontrib>Zhao, Tiejun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yaojie</au><au>Xu, Bing</au><au>Zhao, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional multi-head self-attention on memory for aspect sentiment classification</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>1038</spage><epage>1044</epage><pages>1038-1044</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract><![CDATA[This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network &#x0028 CMA-MemNet &#x0029 . This is an improved model based on memory networks, and makes it possible to extract more rich and complex semantic information from sequences and aspects. In order to fix the memory network&#x02BC s inability to capture context-related information on a word-level, we propose utilizing convolution to capture n-gram grammatical information. We use multi-head self-attention to make up for the problem where the memory network ignores the semantic information of the sequence itself. Meanwhile, unlike most recurrent neural network &#x0028 RNN &#x0029 long short term memory &#x0028 LSTM &#x0029 , gated recurrent unit &#x0028 GRU &#x0029 models, we retain the parallelism of the network. We experiment on the open datasets SemEval-2014 Task 4 and SemEval-2016 Task 6. Compared with some popular baseline methods, our model performs excellently.]]></abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2020.1003243</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2020-07, Vol.7 (4), p.1038-1044
issn 2329-9266
2329-9274
language eng
recordid cdi_ieee_primary_9128078
source IEEE Electronic Library (IEL)
subjects Classification
Convolution
Data mining
Feature extraction
Recurrent neural networks
Semantics
Sentiment analysis
Sequences
Short term
Task analysis
title Convolutional multi-head self-attention on memory for aspect sentiment classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20multi-head%20self-attention%20on%20memory%20for%20aspect%20sentiment%20classification&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Zhang,%20Yaojie&rft.date=2020-07-01&rft.volume=7&rft.issue=4&rft.spage=1038&rft.epage=1044&rft.pages=1038-1044&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2020.1003243&rft_dat=%3Cproquest_RIE%3E2419495941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419495941&rft_id=info:pmid/&rft_ieee_id=9128078&rfr_iscdi=true