Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice
Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes t...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2020-07, Vol.5 (3), p.4719-4726 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4726 |
---|---|
container_issue | 3 |
container_start_page | 4719 |
container_title | IEEE robotics and automation letters |
container_volume | 5 |
creator | Zuo, Wenyu Dhal, Kashish Keow, Alicia Chakravarthy, Animesh Chen, Zheng |
description | Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes the system bulky and therefore impractical for use in small size underwater robots. In this letter, a small and compact 3D maneuverable robotic fish is developed. Instead of using a compressed air tank, the robot is equipped with an on-board water electrolyzer that generates gases in the required amount, in order to achieve changes in depth. The fabricated robotic fish demonstrates fast diving and rising performance. A servo motor is used to generate asymmetric flapping motion on the caudal fin for two-dimensional (2D) planar motion. A 3D dynamic model is derived for the fabricated robotic fish. This 3D model is then embedded into a relative velocity framework, to develop a guidance and control scheme that enables the robotic fish to maneuver through underwater orifices. These underwater orifices may be either stationary or moving. Simulations are used to demonstrate the efficacy of the developed algorithm. |
doi_str_mv | 10.1109/LRA.2020.3003862 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9121666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9121666</ieee_id><sourcerecordid>2419496072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-980ffc9f2ec128898fd506cf4e0534ff02547cb678c16555a0f06069784700e33</originalsourceid><addsrcrecordid>eNpNkEFrAjEQRkNpoWK9F3oJ9Lx2kmySzdFabQuKIJYeQ4yJrmw3NtkV-u-7opSe5mN43ww8hO4JDAkB9TRbjoYUKAwZACsEvUI9yqTMmBTi-l--RYOU9gBAOJVM8R76nIeNq7Jnk9wGj0PdxFDh4LHBy7AOTWnxtEw73AQ8qc26cpi94LmpXXt0say3eLWLod3uOn4ejqfFIpa-tO4O3XhTJTe4zD76mE5W47dstnh9H49mmWWMNZkqwHurPHWW0KJQhd9wENbnDjjLvQfKc2nXQhaWCM65AQ8ChJJFLgEcY330eL57iOG7danR-9DGunupaU5UrgRI2lFwpmwMKUXn9SGWXyb-aAL6ZFB3BvXJoL4Y7CoP50rpnPvDFaFECMF-AUzXaVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419496072</pqid></control><display><type>article</type><title>Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice</title><source>IEEE Electronic Library (IEL)</source><creator>Zuo, Wenyu ; Dhal, Kashish ; Keow, Alicia ; Chakravarthy, Animesh ; Chen, Zheng</creator><creatorcontrib>Zuo, Wenyu ; Dhal, Kashish ; Keow, Alicia ; Chakravarthy, Animesh ; Chen, Zheng</creatorcontrib><description>Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes the system bulky and therefore impractical for use in small size underwater robots. In this letter, a small and compact 3D maneuverable robotic fish is developed. Instead of using a compressed air tank, the robot is equipped with an on-board water electrolyzer that generates gases in the required amount, in order to achieve changes in depth. The fabricated robotic fish demonstrates fast diving and rising performance. A servo motor is used to generate asymmetric flapping motion on the caudal fin for two-dimensional (2D) planar motion. A 3D dynamic model is derived for the fabricated robotic fish. This 3D model is then embedded into a relative velocity framework, to develop a guidance and control scheme that enables the robotic fish to maneuver through underwater orifices. These underwater orifices may be either stationary or moving. Simulations are used to demonstrate the efficacy of the developed algorithm.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3003862</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Biologically-inspired robots ; Buoyancy ; Compressed air ; Computer simulation ; Dynamic models ; Dynamics ; Fish ; Flapping ; Force ; marine robotics ; motion and path planning ; motion control ; Orifices ; Robot control ; Robotics ; Robots ; Servomotors ; Solid modeling ; Three dimensional models ; Three dimensional motion ; Three-dimensional displays ; Two dimensional models ; underactuated robots ; Underwater robots</subject><ispartof>IEEE robotics and automation letters, 2020-07, Vol.5 (3), p.4719-4726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-980ffc9f2ec128898fd506cf4e0534ff02547cb678c16555a0f06069784700e33</citedby><orcidid>0000-0003-0589-9214 ; 0000-0001-7681-4084 ; 0000-0002-6656-594X ; 0000-0002-5339-7596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9121666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9121666$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zuo, Wenyu</creatorcontrib><creatorcontrib>Dhal, Kashish</creatorcontrib><creatorcontrib>Keow, Alicia</creatorcontrib><creatorcontrib>Chakravarthy, Animesh</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><title>Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes the system bulky and therefore impractical for use in small size underwater robots. In this letter, a small and compact 3D maneuverable robotic fish is developed. Instead of using a compressed air tank, the robot is equipped with an on-board water electrolyzer that generates gases in the required amount, in order to achieve changes in depth. The fabricated robotic fish demonstrates fast diving and rising performance. A servo motor is used to generate asymmetric flapping motion on the caudal fin for two-dimensional (2D) planar motion. A 3D dynamic model is derived for the fabricated robotic fish. This 3D model is then embedded into a relative velocity framework, to develop a guidance and control scheme that enables the robotic fish to maneuver through underwater orifices. These underwater orifices may be either stationary or moving. Simulations are used to demonstrate the efficacy of the developed algorithm.</description><subject>Algorithms</subject><subject>Biologically-inspired robots</subject><subject>Buoyancy</subject><subject>Compressed air</subject><subject>Computer simulation</subject><subject>Dynamic models</subject><subject>Dynamics</subject><subject>Fish</subject><subject>Flapping</subject><subject>Force</subject><subject>marine robotics</subject><subject>motion and path planning</subject><subject>motion control</subject><subject>Orifices</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Servomotors</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three dimensional motion</subject><subject>Three-dimensional displays</subject><subject>Two dimensional models</subject><subject>underactuated robots</subject><subject>Underwater robots</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFrAjEQRkNpoWK9F3oJ9Lx2kmySzdFabQuKIJYeQ4yJrmw3NtkV-u-7opSe5mN43ww8hO4JDAkB9TRbjoYUKAwZACsEvUI9yqTMmBTi-l--RYOU9gBAOJVM8R76nIeNq7Jnk9wGj0PdxFDh4LHBy7AOTWnxtEw73AQ8qc26cpi94LmpXXt0say3eLWLod3uOn4ejqfFIpa-tO4O3XhTJTe4zD76mE5W47dstnh9H49mmWWMNZkqwHurPHWW0KJQhd9wENbnDjjLvQfKc2nXQhaWCM65AQ8ChJJFLgEcY330eL57iOG7danR-9DGunupaU5UrgRI2lFwpmwMKUXn9SGWXyb-aAL6ZFB3BvXJoL4Y7CoP50rpnPvDFaFECMF-AUzXaVc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zuo, Wenyu</creator><creator>Dhal, Kashish</creator><creator>Keow, Alicia</creator><creator>Chakravarthy, Animesh</creator><creator>Chen, Zheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0589-9214</orcidid><orcidid>https://orcid.org/0000-0001-7681-4084</orcidid><orcidid>https://orcid.org/0000-0002-6656-594X</orcidid><orcidid>https://orcid.org/0000-0002-5339-7596</orcidid></search><sort><creationdate>20200701</creationdate><title>Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice</title><author>Zuo, Wenyu ; Dhal, Kashish ; Keow, Alicia ; Chakravarthy, Animesh ; Chen, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-980ffc9f2ec128898fd506cf4e0534ff02547cb678c16555a0f06069784700e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biologically-inspired robots</topic><topic>Buoyancy</topic><topic>Compressed air</topic><topic>Computer simulation</topic><topic>Dynamic models</topic><topic>Dynamics</topic><topic>Fish</topic><topic>Flapping</topic><topic>Force</topic><topic>marine robotics</topic><topic>motion and path planning</topic><topic>motion control</topic><topic>Orifices</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Servomotors</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three dimensional motion</topic><topic>Three-dimensional displays</topic><topic>Two dimensional models</topic><topic>underactuated robots</topic><topic>Underwater robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Wenyu</creatorcontrib><creatorcontrib>Dhal, Kashish</creatorcontrib><creatorcontrib>Keow, Alicia</creatorcontrib><creatorcontrib>Chakravarthy, Animesh</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zuo, Wenyu</au><au>Dhal, Kashish</au><au>Keow, Alicia</au><au>Chakravarthy, Animesh</au><au>Chen, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>5</volume><issue>3</issue><spage>4719</spage><epage>4726</epage><pages>4719-4726</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes the system bulky and therefore impractical for use in small size underwater robots. In this letter, a small and compact 3D maneuverable robotic fish is developed. Instead of using a compressed air tank, the robot is equipped with an on-board water electrolyzer that generates gases in the required amount, in order to achieve changes in depth. The fabricated robotic fish demonstrates fast diving and rising performance. A servo motor is used to generate asymmetric flapping motion on the caudal fin for two-dimensional (2D) planar motion. A 3D dynamic model is derived for the fabricated robotic fish. This 3D model is then embedded into a relative velocity framework, to develop a guidance and control scheme that enables the robotic fish to maneuver through underwater orifices. These underwater orifices may be either stationary or moving. Simulations are used to demonstrate the efficacy of the developed algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3003862</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0589-9214</orcidid><orcidid>https://orcid.org/0000-0001-7681-4084</orcidid><orcidid>https://orcid.org/0000-0002-6656-594X</orcidid><orcidid>https://orcid.org/0000-0002-5339-7596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2020-07, Vol.5 (3), p.4719-4726 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9121666 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biologically-inspired robots Buoyancy Compressed air Computer simulation Dynamic models Dynamics Fish Flapping Force marine robotics motion and path planning motion control Orifices Robot control Robotics Robots Servomotors Solid modeling Three dimensional models Three dimensional motion Three-dimensional displays Two dimensional models underactuated robots Underwater robots |
title | Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Control%20of%20a%20Robotic%20Fish%20to%20Enable%203D%20Maneuvering%20Through%20a%20Moving%20Orifice&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zuo,%20Wenyu&rft.date=2020-07-01&rft.volume=5&rft.issue=3&rft.spage=4719&rft.epage=4726&rft.pages=4719-4726&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3003862&rft_dat=%3Cproquest_RIE%3E2419496072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419496072&rft_id=info:pmid/&rft_ieee_id=9121666&rfr_iscdi=true |