Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice

Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2020-07, Vol.5 (3), p.4719-4726
Hauptverfasser: Zuo, Wenyu, Dhal, Kashish, Keow, Alicia, Chakravarthy, Animesh, Chen, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4726
container_issue 3
container_start_page 4719
container_title IEEE robotics and automation letters
container_volume 5
creator Zuo, Wenyu
Dhal, Kashish
Keow, Alicia
Chakravarthy, Animesh
Chen, Zheng
description Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes the system bulky and therefore impractical for use in small size underwater robots. In this letter, a small and compact 3D maneuverable robotic fish is developed. Instead of using a compressed air tank, the robot is equipped with an on-board water electrolyzer that generates gases in the required amount, in order to achieve changes in depth. The fabricated robotic fish demonstrates fast diving and rising performance. A servo motor is used to generate asymmetric flapping motion on the caudal fin for two-dimensional (2D) planar motion. A 3D dynamic model is derived for the fabricated robotic fish. This 3D model is then embedded into a relative velocity framework, to develop a guidance and control scheme that enables the robotic fish to maneuver through underwater orifices. These underwater orifices may be either stationary or moving. Simulations are used to demonstrate the efficacy of the developed algorithm.
doi_str_mv 10.1109/LRA.2020.3003862
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9121666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9121666</ieee_id><sourcerecordid>2419496072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-980ffc9f2ec128898fd506cf4e0534ff02547cb678c16555a0f06069784700e33</originalsourceid><addsrcrecordid>eNpNkEFrAjEQRkNpoWK9F3oJ9Lx2kmySzdFabQuKIJYeQ4yJrmw3NtkV-u-7opSe5mN43ww8hO4JDAkB9TRbjoYUKAwZACsEvUI9yqTMmBTi-l--RYOU9gBAOJVM8R76nIeNq7Jnk9wGj0PdxFDh4LHBy7AOTWnxtEw73AQ8qc26cpi94LmpXXt0say3eLWLod3uOn4ejqfFIpa-tO4O3XhTJTe4zD76mE5W47dstnh9H49mmWWMNZkqwHurPHWW0KJQhd9wENbnDjjLvQfKc2nXQhaWCM65AQ8ChJJFLgEcY330eL57iOG7danR-9DGunupaU5UrgRI2lFwpmwMKUXn9SGWXyb-aAL6ZFB3BvXJoL4Y7CoP50rpnPvDFaFECMF-AUzXaVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419496072</pqid></control><display><type>article</type><title>Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice</title><source>IEEE Electronic Library (IEL)</source><creator>Zuo, Wenyu ; Dhal, Kashish ; Keow, Alicia ; Chakravarthy, Animesh ; Chen, Zheng</creator><creatorcontrib>Zuo, Wenyu ; Dhal, Kashish ; Keow, Alicia ; Chakravarthy, Animesh ; Chen, Zheng</creatorcontrib><description>Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes the system bulky and therefore impractical for use in small size underwater robots. In this letter, a small and compact 3D maneuverable robotic fish is developed. Instead of using a compressed air tank, the robot is equipped with an on-board water electrolyzer that generates gases in the required amount, in order to achieve changes in depth. The fabricated robotic fish demonstrates fast diving and rising performance. A servo motor is used to generate asymmetric flapping motion on the caudal fin for two-dimensional (2D) planar motion. A 3D dynamic model is derived for the fabricated robotic fish. This 3D model is then embedded into a relative velocity framework, to develop a guidance and control scheme that enables the robotic fish to maneuver through underwater orifices. These underwater orifices may be either stationary or moving. Simulations are used to demonstrate the efficacy of the developed algorithm.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3003862</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Biologically-inspired robots ; Buoyancy ; Compressed air ; Computer simulation ; Dynamic models ; Dynamics ; Fish ; Flapping ; Force ; marine robotics ; motion and path planning ; motion control ; Orifices ; Robot control ; Robotics ; Robots ; Servomotors ; Solid modeling ; Three dimensional models ; Three dimensional motion ; Three-dimensional displays ; Two dimensional models ; underactuated robots ; Underwater robots</subject><ispartof>IEEE robotics and automation letters, 2020-07, Vol.5 (3), p.4719-4726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-980ffc9f2ec128898fd506cf4e0534ff02547cb678c16555a0f06069784700e33</citedby><orcidid>0000-0003-0589-9214 ; 0000-0001-7681-4084 ; 0000-0002-6656-594X ; 0000-0002-5339-7596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9121666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9121666$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zuo, Wenyu</creatorcontrib><creatorcontrib>Dhal, Kashish</creatorcontrib><creatorcontrib>Keow, Alicia</creatorcontrib><creatorcontrib>Chakravarthy, Animesh</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><title>Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes the system bulky and therefore impractical for use in small size underwater robots. In this letter, a small and compact 3D maneuverable robotic fish is developed. Instead of using a compressed air tank, the robot is equipped with an on-board water electrolyzer that generates gases in the required amount, in order to achieve changes in depth. The fabricated robotic fish demonstrates fast diving and rising performance. A servo motor is used to generate asymmetric flapping motion on the caudal fin for two-dimensional (2D) planar motion. A 3D dynamic model is derived for the fabricated robotic fish. This 3D model is then embedded into a relative velocity framework, to develop a guidance and control scheme that enables the robotic fish to maneuver through underwater orifices. These underwater orifices may be either stationary or moving. Simulations are used to demonstrate the efficacy of the developed algorithm.</description><subject>Algorithms</subject><subject>Biologically-inspired robots</subject><subject>Buoyancy</subject><subject>Compressed air</subject><subject>Computer simulation</subject><subject>Dynamic models</subject><subject>Dynamics</subject><subject>Fish</subject><subject>Flapping</subject><subject>Force</subject><subject>marine robotics</subject><subject>motion and path planning</subject><subject>motion control</subject><subject>Orifices</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Servomotors</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three dimensional motion</subject><subject>Three-dimensional displays</subject><subject>Two dimensional models</subject><subject>underactuated robots</subject><subject>Underwater robots</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFrAjEQRkNpoWK9F3oJ9Lx2kmySzdFabQuKIJYeQ4yJrmw3NtkV-u-7opSe5mN43ww8hO4JDAkB9TRbjoYUKAwZACsEvUI9yqTMmBTi-l--RYOU9gBAOJVM8R76nIeNq7Jnk9wGj0PdxFDh4LHBy7AOTWnxtEw73AQ8qc26cpi94LmpXXt0say3eLWLod3uOn4ejqfFIpa-tO4O3XhTJTe4zD76mE5W47dstnh9H49mmWWMNZkqwHurPHWW0KJQhd9wENbnDjjLvQfKc2nXQhaWCM65AQ8ChJJFLgEcY330eL57iOG7danR-9DGunupaU5UrgRI2lFwpmwMKUXn9SGWXyb-aAL6ZFB3BvXJoL4Y7CoP50rpnPvDFaFECMF-AUzXaVc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zuo, Wenyu</creator><creator>Dhal, Kashish</creator><creator>Keow, Alicia</creator><creator>Chakravarthy, Animesh</creator><creator>Chen, Zheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0589-9214</orcidid><orcidid>https://orcid.org/0000-0001-7681-4084</orcidid><orcidid>https://orcid.org/0000-0002-6656-594X</orcidid><orcidid>https://orcid.org/0000-0002-5339-7596</orcidid></search><sort><creationdate>20200701</creationdate><title>Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice</title><author>Zuo, Wenyu ; Dhal, Kashish ; Keow, Alicia ; Chakravarthy, Animesh ; Chen, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-980ffc9f2ec128898fd506cf4e0534ff02547cb678c16555a0f06069784700e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biologically-inspired robots</topic><topic>Buoyancy</topic><topic>Compressed air</topic><topic>Computer simulation</topic><topic>Dynamic models</topic><topic>Dynamics</topic><topic>Fish</topic><topic>Flapping</topic><topic>Force</topic><topic>marine robotics</topic><topic>motion and path planning</topic><topic>motion control</topic><topic>Orifices</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Servomotors</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three dimensional motion</topic><topic>Three-dimensional displays</topic><topic>Two dimensional models</topic><topic>underactuated robots</topic><topic>Underwater robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Wenyu</creatorcontrib><creatorcontrib>Dhal, Kashish</creatorcontrib><creatorcontrib>Keow, Alicia</creatorcontrib><creatorcontrib>Chakravarthy, Animesh</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zuo, Wenyu</au><au>Dhal, Kashish</au><au>Keow, Alicia</au><au>Chakravarthy, Animesh</au><au>Chen, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>5</volume><issue>3</issue><spage>4719</spage><epage>4726</epage><pages>4719-4726</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Three-dimensionally (3D) maneuverable robotic fish are highly desirable due to their ability to explore and survey the underwater environment. Existing depth control mechanisms are typically focused on using either compressed air or a piston to generate changes in volume. However, this often makes the system bulky and therefore impractical for use in small size underwater robots. In this letter, a small and compact 3D maneuverable robotic fish is developed. Instead of using a compressed air tank, the robot is equipped with an on-board water electrolyzer that generates gases in the required amount, in order to achieve changes in depth. The fabricated robotic fish demonstrates fast diving and rising performance. A servo motor is used to generate asymmetric flapping motion on the caudal fin for two-dimensional (2D) planar motion. A 3D dynamic model is derived for the fabricated robotic fish. This 3D model is then embedded into a relative velocity framework, to develop a guidance and control scheme that enables the robotic fish to maneuver through underwater orifices. These underwater orifices may be either stationary or moving. Simulations are used to demonstrate the efficacy of the developed algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3003862</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0589-9214</orcidid><orcidid>https://orcid.org/0000-0001-7681-4084</orcidid><orcidid>https://orcid.org/0000-0002-6656-594X</orcidid><orcidid>https://orcid.org/0000-0002-5339-7596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2020-07, Vol.5 (3), p.4719-4726
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9121666
source IEEE Electronic Library (IEL)
subjects Algorithms
Biologically-inspired robots
Buoyancy
Compressed air
Computer simulation
Dynamic models
Dynamics
Fish
Flapping
Force
marine robotics
motion and path planning
motion control
Orifices
Robot control
Robotics
Robots
Servomotors
Solid modeling
Three dimensional models
Three dimensional motion
Three-dimensional displays
Two dimensional models
underactuated robots
Underwater robots
title Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Control%20of%20a%20Robotic%20Fish%20to%20Enable%203D%20Maneuvering%20Through%20a%20Moving%20Orifice&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zuo,%20Wenyu&rft.date=2020-07-01&rft.volume=5&rft.issue=3&rft.spage=4719&rft.epage=4726&rft.pages=4719-4726&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3003862&rft_dat=%3Cproquest_RIE%3E2419496072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419496072&rft_id=info:pmid/&rft_ieee_id=9121666&rfr_iscdi=true