Effective Demand Forecasting Model Using Business Intelligence Empowered With Machine Learning

In the modern era business intelligence (BI) has a pivotal role in articulating a strategy and taking correct measures based on data. Business intelligence plays a pivotal role in an inevitable decision support system that enables the enterprise to perform analysis on data and throughout the process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.116013-116023
Hauptverfasser: Khan, Muhammad Adnan, Saqib, Shazia, Alyas, Tahir, Ur Rehman, Anees, Saeed, Yousaf, Zeb, Asim, Zareei, Mahdi, Mohamed, Ehab Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116023
container_issue
container_start_page 116013
container_title IEEE access
container_volume 8
creator Khan, Muhammad Adnan
Saqib, Shazia
Alyas, Tahir
Ur Rehman, Anees
Saeed, Yousaf
Zeb, Asim
Zareei, Mahdi
Mohamed, Ehab Mahmoud
description In the modern era business intelligence (BI) has a pivotal role in articulating a strategy and taking correct measures based on data. Business intelligence plays a pivotal role in an inevitable decision support system that enables the enterprise to perform analysis on data and throughout the process of business. Machine learning predicts the forecasting of future demands of the enterprises. Demand forecasting is one of the main decision-making tasks of enterprise. For demand forecasting first raw sales data is collected from the market, then according to data, the future sale/product demands are forecasted. This prediction is based on collected data that compiles through different sources. The machine learning engine executes data from different modules and determines the weekly, monthly, and quarterly demands of goods/commodities. In demand forecasting, its perfect accuracy is non-compromising, the more accurate system model is more efficient. Furthermore, we test the efficiency by comparing the predicted data with actual data and determine the percentage error. Simulation results show that after applying the purposed solution on real-time organization data, we get up to 92.38 % accuracies for the store in terms of intelligent demand forecasting.
doi_str_mv 10.1109/ACCESS.2020.3003790
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9121220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9121220</ieee_id><doaj_id>oai_doaj_org_article_797a0b0d8ffd4f76ab2f3a6dead4d770</doaj_id><sourcerecordid>2454612485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-301b0c5c6e135e73757a03f8c2665dd64b53f47b529c5a64042f0d54ce24a8b23</originalsourceid><addsrcrecordid>eNpNUU1rGzEUXEoKDUl-gS-Cnu08fe8eU9dpDQ49pKG3Cq30ZK9Zr1xpndB_XzkbQt9lHsPMvAdTVTMKC0qhub1bLlePjwsGDBYcgOsGPlSXjKpmziVXF__tn6qbnPdQpi6U1JfV71UI6MbuGclXPNjBk_uY0Nk8dsOWPESPPXnK5_3LqQDmTNbDiH3fbXFwSFaHY3zBhJ786sYdebBuV1RkgzYNxXVdfQy2z3jzhlfV0_3q5_L7fPPj23p5t5k7AfU450BbcNIppFyi5lpqCzzUjiklvVeilTwI3UrWOGmVAMECeCkcMmHrlvGraj3l-mj35pi6g01_TbSdeSVi2hqbxs71aHRTslvwdQheBK1sywK3yqP1wmsNJevzlHVM8c8J82j28ZSG8r5hQgpFmahlUfFJ5VLMOWF4v0rBnHsxUy_m3It566W4ZpOrQ8R3R0MZZQz4P3yQiNY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454612485</pqid></control><display><type>article</type><title>Effective Demand Forecasting Model Using Business Intelligence Empowered With Machine Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Khan, Muhammad Adnan ; Saqib, Shazia ; Alyas, Tahir ; Ur Rehman, Anees ; Saeed, Yousaf ; Zeb, Asim ; Zareei, Mahdi ; Mohamed, Ehab Mahmoud</creator><creatorcontrib>Khan, Muhammad Adnan ; Saqib, Shazia ; Alyas, Tahir ; Ur Rehman, Anees ; Saeed, Yousaf ; Zeb, Asim ; Zareei, Mahdi ; Mohamed, Ehab Mahmoud</creatorcontrib><description>In the modern era business intelligence (BI) has a pivotal role in articulating a strategy and taking correct measures based on data. Business intelligence plays a pivotal role in an inevitable decision support system that enables the enterprise to perform analysis on data and throughout the process of business. Machine learning predicts the forecasting of future demands of the enterprises. Demand forecasting is one of the main decision-making tasks of enterprise. For demand forecasting first raw sales data is collected from the market, then according to data, the future sale/product demands are forecasted. This prediction is based on collected data that compiles through different sources. The machine learning engine executes data from different modules and determines the weekly, monthly, and quarterly demands of goods/commodities. In demand forecasting, its perfect accuracy is non-compromising, the more accurate system model is more efficient. Furthermore, we test the efficiency by comparing the predicted data with actual data and determine the percentage error. Simulation results show that after applying the purposed solution on real-time organization data, we get up to 92.38 % accuracies for the store in terms of intelligent demand forecasting.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3003790</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AWS sage maker ; Business ; Business intelligence ; Business machines ; Data collection ; Data models ; Decision analysis ; Decision support systems ; Demand ; Demand forecasting ; Economic forecasting ; Forecasting ; Information management ; Intelligence (information) ; Machine learning ; Mathematical models ; prediction ; Predictive models ; sale forecasting ; Training</subject><ispartof>IEEE access, 2020, Vol.8, p.116013-116023</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-301b0c5c6e135e73757a03f8c2665dd64b53f47b529c5a64042f0d54ce24a8b23</citedby><cites>FETCH-LOGICAL-c408t-301b0c5c6e135e73757a03f8c2665dd64b53f47b529c5a64042f0d54ce24a8b23</cites><orcidid>0000-0003-0087-7112 ; 0000-0002-6799-0390 ; 0000-0003-0938-3127 ; 0000-0001-6623-1758 ; 0000-0001-7103-6391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9121220$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Khan, Muhammad Adnan</creatorcontrib><creatorcontrib>Saqib, Shazia</creatorcontrib><creatorcontrib>Alyas, Tahir</creatorcontrib><creatorcontrib>Ur Rehman, Anees</creatorcontrib><creatorcontrib>Saeed, Yousaf</creatorcontrib><creatorcontrib>Zeb, Asim</creatorcontrib><creatorcontrib>Zareei, Mahdi</creatorcontrib><creatorcontrib>Mohamed, Ehab Mahmoud</creatorcontrib><title>Effective Demand Forecasting Model Using Business Intelligence Empowered With Machine Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the modern era business intelligence (BI) has a pivotal role in articulating a strategy and taking correct measures based on data. Business intelligence plays a pivotal role in an inevitable decision support system that enables the enterprise to perform analysis on data and throughout the process of business. Machine learning predicts the forecasting of future demands of the enterprises. Demand forecasting is one of the main decision-making tasks of enterprise. For demand forecasting first raw sales data is collected from the market, then according to data, the future sale/product demands are forecasted. This prediction is based on collected data that compiles through different sources. The machine learning engine executes data from different modules and determines the weekly, monthly, and quarterly demands of goods/commodities. In demand forecasting, its perfect accuracy is non-compromising, the more accurate system model is more efficient. Furthermore, we test the efficiency by comparing the predicted data with actual data and determine the percentage error. Simulation results show that after applying the purposed solution on real-time organization data, we get up to 92.38 % accuracies for the store in terms of intelligent demand forecasting.</description><subject>AWS sage maker</subject><subject>Business</subject><subject>Business intelligence</subject><subject>Business machines</subject><subject>Data collection</subject><subject>Data models</subject><subject>Decision analysis</subject><subject>Decision support systems</subject><subject>Demand</subject><subject>Demand forecasting</subject><subject>Economic forecasting</subject><subject>Forecasting</subject><subject>Information management</subject><subject>Intelligence (information)</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>prediction</subject><subject>Predictive models</subject><subject>sale forecasting</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEUXEoKDUl-gS-Cnu08fe8eU9dpDQ49pKG3Cq30ZK9Zr1xpndB_XzkbQt9lHsPMvAdTVTMKC0qhub1bLlePjwsGDBYcgOsGPlSXjKpmziVXF__tn6qbnPdQpi6U1JfV71UI6MbuGclXPNjBk_uY0Nk8dsOWPESPPXnK5_3LqQDmTNbDiH3fbXFwSFaHY3zBhJ786sYdebBuV1RkgzYNxXVdfQy2z3jzhlfV0_3q5_L7fPPj23p5t5k7AfU450BbcNIppFyi5lpqCzzUjiklvVeilTwI3UrWOGmVAMECeCkcMmHrlvGraj3l-mj35pi6g01_TbSdeSVi2hqbxs71aHRTslvwdQheBK1sywK3yqP1wmsNJevzlHVM8c8J82j28ZSG8r5hQgpFmahlUfFJ5VLMOWF4v0rBnHsxUy_m3It566W4ZpOrQ8R3R0MZZQz4P3yQiNY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Khan, Muhammad Adnan</creator><creator>Saqib, Shazia</creator><creator>Alyas, Tahir</creator><creator>Ur Rehman, Anees</creator><creator>Saeed, Yousaf</creator><creator>Zeb, Asim</creator><creator>Zareei, Mahdi</creator><creator>Mohamed, Ehab Mahmoud</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0087-7112</orcidid><orcidid>https://orcid.org/0000-0002-6799-0390</orcidid><orcidid>https://orcid.org/0000-0003-0938-3127</orcidid><orcidid>https://orcid.org/0000-0001-6623-1758</orcidid><orcidid>https://orcid.org/0000-0001-7103-6391</orcidid></search><sort><creationdate>2020</creationdate><title>Effective Demand Forecasting Model Using Business Intelligence Empowered With Machine Learning</title><author>Khan, Muhammad Adnan ; Saqib, Shazia ; Alyas, Tahir ; Ur Rehman, Anees ; Saeed, Yousaf ; Zeb, Asim ; Zareei, Mahdi ; Mohamed, Ehab Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-301b0c5c6e135e73757a03f8c2665dd64b53f47b529c5a64042f0d54ce24a8b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AWS sage maker</topic><topic>Business</topic><topic>Business intelligence</topic><topic>Business machines</topic><topic>Data collection</topic><topic>Data models</topic><topic>Decision analysis</topic><topic>Decision support systems</topic><topic>Demand</topic><topic>Demand forecasting</topic><topic>Economic forecasting</topic><topic>Forecasting</topic><topic>Information management</topic><topic>Intelligence (information)</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>prediction</topic><topic>Predictive models</topic><topic>sale forecasting</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Muhammad Adnan</creatorcontrib><creatorcontrib>Saqib, Shazia</creatorcontrib><creatorcontrib>Alyas, Tahir</creatorcontrib><creatorcontrib>Ur Rehman, Anees</creatorcontrib><creatorcontrib>Saeed, Yousaf</creatorcontrib><creatorcontrib>Zeb, Asim</creatorcontrib><creatorcontrib>Zareei, Mahdi</creatorcontrib><creatorcontrib>Mohamed, Ehab Mahmoud</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Muhammad Adnan</au><au>Saqib, Shazia</au><au>Alyas, Tahir</au><au>Ur Rehman, Anees</au><au>Saeed, Yousaf</au><au>Zeb, Asim</au><au>Zareei, Mahdi</au><au>Mohamed, Ehab Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Demand Forecasting Model Using Business Intelligence Empowered With Machine Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>116013</spage><epage>116023</epage><pages>116013-116023</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the modern era business intelligence (BI) has a pivotal role in articulating a strategy and taking correct measures based on data. Business intelligence plays a pivotal role in an inevitable decision support system that enables the enterprise to perform analysis on data and throughout the process of business. Machine learning predicts the forecasting of future demands of the enterprises. Demand forecasting is one of the main decision-making tasks of enterprise. For demand forecasting first raw sales data is collected from the market, then according to data, the future sale/product demands are forecasted. This prediction is based on collected data that compiles through different sources. The machine learning engine executes data from different modules and determines the weekly, monthly, and quarterly demands of goods/commodities. In demand forecasting, its perfect accuracy is non-compromising, the more accurate system model is more efficient. Furthermore, we test the efficiency by comparing the predicted data with actual data and determine the percentage error. Simulation results show that after applying the purposed solution on real-time organization data, we get up to 92.38 % accuracies for the store in terms of intelligent demand forecasting.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3003790</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0087-7112</orcidid><orcidid>https://orcid.org/0000-0002-6799-0390</orcidid><orcidid>https://orcid.org/0000-0003-0938-3127</orcidid><orcidid>https://orcid.org/0000-0001-6623-1758</orcidid><orcidid>https://orcid.org/0000-0001-7103-6391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.116013-116023
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9121220
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects AWS sage maker
Business
Business intelligence
Business machines
Data collection
Data models
Decision analysis
Decision support systems
Demand
Demand forecasting
Economic forecasting
Forecasting
Information management
Intelligence (information)
Machine learning
Mathematical models
prediction
Predictive models
sale forecasting
Training
title Effective Demand Forecasting Model Using Business Intelligence Empowered With Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Demand%20Forecasting%20Model%20Using%20Business%20Intelligence%20Empowered%20With%20Machine%20Learning&rft.jtitle=IEEE%20access&rft.au=Khan,%20Muhammad%20Adnan&rft.date=2020&rft.volume=8&rft.spage=116013&rft.epage=116023&rft.pages=116013-116023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3003790&rft_dat=%3Cproquest_ieee_%3E2454612485%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454612485&rft_id=info:pmid/&rft_ieee_id=9121220&rft_doaj_id=oai_doaj_org_article_797a0b0d8ffd4f76ab2f3a6dead4d770&rfr_iscdi=true