Resting State fMRI and Improved Deep Learning Algorithm for Earlier Detection of Alzheimer's Disease

The development of computerized healthcare has been powered by diagnostic imaging and machine learning techniques. In particular, recent advances in deep learning have opened a new era in support of multimedia healthcare distribution. For earlier detection of Alzheimer's disease, the study sugg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.115383-115392
Hauptverfasser: Guo, Haibing, Zhang, Yongjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115392
container_issue
container_start_page 115383
container_title IEEE access
container_volume 8
creator Guo, Haibing
Zhang, Yongjin
description The development of computerized healthcare has been powered by diagnostic imaging and machine learning techniques. In particular, recent advances in deep learning have opened a new era in support of multimedia healthcare distribution. For earlier detection of Alzheimer's disease, the study suggested the Improved Deep Learning Algorithm (IDLA) and statistically significant text information. The specific information in clinical text includes the age, sex and genes of the person and apolipoprotein E; the brain function is established using resting-state functional data (MRI) for the measurement of connectivity in the brain regions. A specialized network of autoencoders is used in earlier diagnosis to distinguish between natural aging and disorder progression. The suggested approach incorporates effectively biased neural network functionality and allows a reliable Alzheimer's disease recognition. In comparison with conventional classifiers depends on time series R-fMRI results, the proposed deep learning algorithm has improved significantly and, in the best cases, the standard deviation reduced by 45%, indicating the forecast model is more reliable and efficient in relation to conventional methodologies. The work examines the benefits of improved deep learning algorithms from recognizing high-dimensional information in healthcare and can lead to the early diagnosis and prevention of Alzheimer's disease.
doi_str_mv 10.1109/ACCESS.2020.3003424
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9119997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9119997</ieee_id><doaj_id>oai_doaj_org_article_756b313b5dee4ee7b578ac5161fef9fc</doaj_id><sourcerecordid>2454615465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f907104bd75f5f0d953a2faa0456289971f618f0cf12a190f57d5ebc41c73fc63</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhpfSQkKaX5CLoIceil3N6mt1NBunNbgU4uYstNqRI2OvXGndkv76yt2Q9liBkBiedyTmqaoboHMAqj8u2na52cxrWtM5o5Txmr-qLmuQesYEk6__uV9U1znvaFlNKQl1WfX3mMcwbMlmtCMS_-V-RezQk9XhmOIP7Mkt4pGs0abhTC3225jC-HggPiaytGkfMBVmRDeGOJDoC_LrEcMB0_tMbkNGm_Ft9cbbfcbr5_Oqerhbfms_z9ZfP63axXrmOG3GmddUAeVdr4QXnvZaMFt7aykXsm60VuAlNJ46D7UFTb1QvcDOcXCKeSfZVbWa-vbR7swxhYNNTybaYP4UYtoam8bg9miUkB0D1okekSOqTqjGOgESPHrtXen1bupV5vD9VIZkdvGUhvJ9U3PBJZQtCsUmyqWYc0L_8ipQc7ZjJjvmbMc82ympD1PqJ3bRZxdwcPiSLHYE1yDk2ROFQjf_T7eheCwm2ngaxhK9maIB8W9EA-gyTfYb1iqrCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454615465</pqid></control><display><type>article</type><title>Resting State fMRI and Improved Deep Learning Algorithm for Earlier Detection of Alzheimer's Disease</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Guo, Haibing ; Zhang, Yongjin</creator><creatorcontrib>Guo, Haibing ; Zhang, Yongjin</creatorcontrib><description>The development of computerized healthcare has been powered by diagnostic imaging and machine learning techniques. In particular, recent advances in deep learning have opened a new era in support of multimedia healthcare distribution. For earlier detection of Alzheimer's disease, the study suggested the Improved Deep Learning Algorithm (IDLA) and statistically significant text information. The specific information in clinical text includes the age, sex and genes of the person and apolipoprotein E; the brain function is established using resting-state functional data (MRI) for the measurement of connectivity in the brain regions. A specialized network of autoencoders is used in earlier diagnosis to distinguish between natural aging and disorder progression. The suggested approach incorporates effectively biased neural network functionality and allows a reliable Alzheimer's disease recognition. In comparison with conventional classifiers depends on time series R-fMRI results, the proposed deep learning algorithm has improved significantly and, in the best cases, the standard deviation reduced by 45%, indicating the forecast model is more reliable and efficient in relation to conventional methodologies. The work examines the benefits of improved deep learning algorithms from recognizing high-dimensional information in healthcare and can lead to the early diagnosis and prevention of Alzheimer's disease.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3003424</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Aging (natural) ; Algorithms ; Alzheimer's disease ; autoencoder network ; Brain ; Brain modeling ; Computer Science ; Computer Science, Information Systems ; Data models ; Deep learning ; Diagnosis ; Diagnostic systems ; Engineering ; Engineering, Electrical &amp; Electronic ; Functional magnetic resonance imaging ; Health care ; improved deep learning algorithm (IDLA) ; Machine learning ; Multimedia ; Neural networks ; R-fMRI data ; Science &amp; Technology ; Technology ; Telecommunications</subject><ispartof>IEEE access, 2020, Vol.8, p.115383-115392</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>44</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000549156000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-f907104bd75f5f0d953a2faa0456289971f618f0cf12a190f57d5ebc41c73fc63</citedby><cites>FETCH-LOGICAL-c408t-f907104bd75f5f0d953a2faa0456289971f618f0cf12a190f57d5ebc41c73fc63</cites><orcidid>0000-0002-7182-6016 ; 0000-0002-7159-7778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9119997$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Guo, Haibing</creatorcontrib><creatorcontrib>Zhang, Yongjin</creatorcontrib><title>Resting State fMRI and Improved Deep Learning Algorithm for Earlier Detection of Alzheimer's Disease</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>The development of computerized healthcare has been powered by diagnostic imaging and machine learning techniques. In particular, recent advances in deep learning have opened a new era in support of multimedia healthcare distribution. For earlier detection of Alzheimer's disease, the study suggested the Improved Deep Learning Algorithm (IDLA) and statistically significant text information. The specific information in clinical text includes the age, sex and genes of the person and apolipoprotein E; the brain function is established using resting-state functional data (MRI) for the measurement of connectivity in the brain regions. A specialized network of autoencoders is used in earlier diagnosis to distinguish between natural aging and disorder progression. The suggested approach incorporates effectively biased neural network functionality and allows a reliable Alzheimer's disease recognition. In comparison with conventional classifiers depends on time series R-fMRI results, the proposed deep learning algorithm has improved significantly and, in the best cases, the standard deviation reduced by 45%, indicating the forecast model is more reliable and efficient in relation to conventional methodologies. The work examines the benefits of improved deep learning algorithms from recognizing high-dimensional information in healthcare and can lead to the early diagnosis and prevention of Alzheimer's disease.</description><subject>Aging (natural)</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>autoencoder network</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Functional magnetic resonance imaging</subject><subject>Health care</subject><subject>improved deep learning algorithm (IDLA)</subject><subject>Machine learning</subject><subject>Multimedia</subject><subject>Neural networks</subject><subject>R-fMRI data</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Telecommunications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1rGzEQhpfSQkKaX5CLoIceil3N6mt1NBunNbgU4uYstNqRI2OvXGndkv76yt2Q9liBkBiedyTmqaoboHMAqj8u2na52cxrWtM5o5Txmr-qLmuQesYEk6__uV9U1znvaFlNKQl1WfX3mMcwbMlmtCMS_-V-RezQk9XhmOIP7Mkt4pGs0abhTC3225jC-HggPiaytGkfMBVmRDeGOJDoC_LrEcMB0_tMbkNGm_Ft9cbbfcbr5_Oqerhbfms_z9ZfP63axXrmOG3GmddUAeVdr4QXnvZaMFt7aykXsm60VuAlNJ46D7UFTb1QvcDOcXCKeSfZVbWa-vbR7swxhYNNTybaYP4UYtoam8bg9miUkB0D1okekSOqTqjGOgESPHrtXen1bupV5vD9VIZkdvGUhvJ9U3PBJZQtCsUmyqWYc0L_8ipQc7ZjJjvmbMc82ympD1PqJ3bRZxdwcPiSLHYE1yDk2ROFQjf_T7eheCwm2ngaxhK9maIB8W9EA-gyTfYb1iqrCg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Guo, Haibing</creator><creator>Zhang, Yongjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7182-6016</orcidid><orcidid>https://orcid.org/0000-0002-7159-7778</orcidid></search><sort><creationdate>2020</creationdate><title>Resting State fMRI and Improved Deep Learning Algorithm for Earlier Detection of Alzheimer's Disease</title><author>Guo, Haibing ; Zhang, Yongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f907104bd75f5f0d953a2faa0456289971f618f0cf12a190f57d5ebc41c73fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging (natural)</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>autoencoder network</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Functional magnetic resonance imaging</topic><topic>Health care</topic><topic>improved deep learning algorithm (IDLA)</topic><topic>Machine learning</topic><topic>Multimedia</topic><topic>Neural networks</topic><topic>R-fMRI data</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Haibing</creatorcontrib><creatorcontrib>Zhang, Yongjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Haibing</au><au>Zhang, Yongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting State fMRI and Improved Deep Learning Algorithm for Earlier Detection of Alzheimer's Disease</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>115383</spage><epage>115392</epage><pages>115383-115392</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The development of computerized healthcare has been powered by diagnostic imaging and machine learning techniques. In particular, recent advances in deep learning have opened a new era in support of multimedia healthcare distribution. For earlier detection of Alzheimer's disease, the study suggested the Improved Deep Learning Algorithm (IDLA) and statistically significant text information. The specific information in clinical text includes the age, sex and genes of the person and apolipoprotein E; the brain function is established using resting-state functional data (MRI) for the measurement of connectivity in the brain regions. A specialized network of autoencoders is used in earlier diagnosis to distinguish between natural aging and disorder progression. The suggested approach incorporates effectively biased neural network functionality and allows a reliable Alzheimer's disease recognition. In comparison with conventional classifiers depends on time series R-fMRI results, the proposed deep learning algorithm has improved significantly and, in the best cases, the standard deviation reduced by 45%, indicating the forecast model is more reliable and efficient in relation to conventional methodologies. The work examines the benefits of improved deep learning algorithms from recognizing high-dimensional information in healthcare and can lead to the early diagnosis and prevention of Alzheimer's disease.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3003424</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7182-6016</orcidid><orcidid>https://orcid.org/0000-0002-7159-7778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.115383-115392
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9119997
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Aging (natural)
Algorithms
Alzheimer's disease
autoencoder network
Brain
Brain modeling
Computer Science
Computer Science, Information Systems
Data models
Deep learning
Diagnosis
Diagnostic systems
Engineering
Engineering, Electrical & Electronic
Functional magnetic resonance imaging
Health care
improved deep learning algorithm (IDLA)
Machine learning
Multimedia
Neural networks
R-fMRI data
Science & Technology
Technology
Telecommunications
title Resting State fMRI and Improved Deep Learning Algorithm for Earlier Detection of Alzheimer's Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%20State%20fMRI%20and%20Improved%20Deep%20Learning%20Algorithm%20for%20Earlier%20Detection%20of%20Alzheimer's%20Disease&rft.jtitle=IEEE%20access&rft.au=Guo,%20Haibing&rft.date=2020&rft.volume=8&rft.spage=115383&rft.epage=115392&rft.pages=115383-115392&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3003424&rft_dat=%3Cproquest_ieee_%3E2454615465%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454615465&rft_id=info:pmid/&rft_ieee_id=9119997&rft_doaj_id=oai_doaj_org_article_756b313b5dee4ee7b578ac5161fef9fc&rfr_iscdi=true