DesnowGAN: An Efficient Single Image Snow Removal Framework Using Cross-Resolution Lateral Connection and GANs

In this paper, we present a simple, efficient, and highly modularized network architecture for single-image snow-removal. To address the challenging snow-removal problem in terms of network interpretability and computational complexity, we employ a pyramidal hierarchical design with lateral connecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2021-04, Vol.31 (4), p.1342-1350
Hauptverfasser: Jaw, Da-Wei, Huang, Shih-Chia, Kuo, Sy-Yen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1350
container_issue 4
container_start_page 1342
container_title IEEE transactions on circuits and systems for video technology
container_volume 31
creator Jaw, Da-Wei
Huang, Shih-Chia
Kuo, Sy-Yen
description In this paper, we present a simple, efficient, and highly modularized network architecture for single-image snow-removal. To address the challenging snow-removal problem in terms of network interpretability and computational complexity, we employ a pyramidal hierarchical design with lateral connections across different resolutions. This design enables us to incorporate high-level semantic features with other feature maps at different scales to enrich location information and reduce computational time. In addition, a refinement stage based on recently introduced generative adversarial networks (GANs) is proposed to further improve the visual quality of the resulting snow-removed images and make a refined image and a clean image indistinguishable by a computer vision algorithm to avoid the potential perturbations of machine interpretation. Finally, atrous spatial pyramid pooling (ASPP) is adopted to probe features at multiple scales and further boost the performance. The proposed DesnowGAN (DS-GAN) performs significantly better than state-of-the-art methods quantitatively and qualitatively on the Snow100K dataset.
doi_str_mv 10.1109/TCSVT.2020.3003025
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9119486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9119486</ieee_id><sourcerecordid>2509291522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5e1a40ba2697bf3ee075d18baf3a4f9eefaa1b76fed61d1a07a85989f3261a1a3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiYj-Ab1s4rm4s-22XW-kApIQTfjw2gx0lhTpLu4Wif_eIsTTTCbPO5N5guAeeA-Aq6d5PvuY9wQXvBdxHnEhL4IOSJmFQnB52fZcQpgJkNfBjfcbziHO4rQTmBfyxh5G_bdn1jdsoHW1qsg0bFaZ9ZbYuMY1sVmLsCnV9hu3bOiwpoN1n2zhW4jlznofTsnb7b6prGETbMi1YG6NodXfCE3J2hv-NrjSuPV0d67dYDEczPPXcPI-Guf9SbgSSjahJMCYL1EkKl3qiIinsoRsiTrCWCsijQjLNNFUJlAC8hQzqTKlI5EAAkbd4PG0d-fs1558U2zs3pn2ZCEkV0KBFKKlxIlaHV9wpIudq2p0PwXw4ui1-PNaHL0WZ69t6OEUqojoP6AAVJwl0S9xhnS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509291522</pqid></control><display><type>article</type><title>DesnowGAN: An Efficient Single Image Snow Removal Framework Using Cross-Resolution Lateral Connection and GANs</title><source>IEEE Electronic Library (IEL)</source><creator>Jaw, Da-Wei ; Huang, Shih-Chia ; Kuo, Sy-Yen</creator><creatorcontrib>Jaw, Da-Wei ; Huang, Shih-Chia ; Kuo, Sy-Yen</creatorcontrib><description>In this paper, we present a simple, efficient, and highly modularized network architecture for single-image snow-removal. To address the challenging snow-removal problem in terms of network interpretability and computational complexity, we employ a pyramidal hierarchical design with lateral connections across different resolutions. This design enables us to incorporate high-level semantic features with other feature maps at different scales to enrich location information and reduce computational time. In addition, a refinement stage based on recently introduced generative adversarial networks (GANs) is proposed to further improve the visual quality of the resulting snow-removed images and make a refined image and a clean image indistinguishable by a computer vision algorithm to avoid the potential perturbations of machine interpretation. Finally, atrous spatial pyramid pooling (ASPP) is adopted to probe features at multiple scales and further boost the performance. The proposed DesnowGAN (DS-GAN) performs significantly better than state-of-the-art methods quantitatively and qualitatively on the Snow100K dataset.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2020.3003025</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Atmospheric modeling ; Computational complexity ; Computer architecture ; Computer vision ; Computing time ; deep learning ; Feature extraction ; Feature maps ; Generative adversarial networks ; image enhancement ; Image quality ; image restoration ; Network architecture ; Perturbation ; Radio frequency ; Snow ; Snow Removal</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2021-04, Vol.31 (4), p.1342-1350</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5e1a40ba2697bf3ee075d18baf3a4f9eefaa1b76fed61d1a07a85989f3261a1a3</citedby><cites>FETCH-LOGICAL-c295t-5e1a40ba2697bf3ee075d18baf3a4f9eefaa1b76fed61d1a07a85989f3261a1a3</cites><orcidid>0000-0002-6896-3415 ; 0000-0002-9903-5910 ; 0000-0002-3021-8321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9119486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9119486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jaw, Da-Wei</creatorcontrib><creatorcontrib>Huang, Shih-Chia</creatorcontrib><creatorcontrib>Kuo, Sy-Yen</creatorcontrib><title>DesnowGAN: An Efficient Single Image Snow Removal Framework Using Cross-Resolution Lateral Connection and GANs</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we present a simple, efficient, and highly modularized network architecture for single-image snow-removal. To address the challenging snow-removal problem in terms of network interpretability and computational complexity, we employ a pyramidal hierarchical design with lateral connections across different resolutions. This design enables us to incorporate high-level semantic features with other feature maps at different scales to enrich location information and reduce computational time. In addition, a refinement stage based on recently introduced generative adversarial networks (GANs) is proposed to further improve the visual quality of the resulting snow-removed images and make a refined image and a clean image indistinguishable by a computer vision algorithm to avoid the potential perturbations of machine interpretation. Finally, atrous spatial pyramid pooling (ASPP) is adopted to probe features at multiple scales and further boost the performance. The proposed DesnowGAN (DS-GAN) performs significantly better than state-of-the-art methods quantitatively and qualitatively on the Snow100K dataset.</description><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Computational complexity</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Computing time</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Generative adversarial networks</subject><subject>image enhancement</subject><subject>Image quality</subject><subject>image restoration</subject><subject>Network architecture</subject><subject>Perturbation</subject><subject>Radio frequency</subject><subject>Snow</subject><subject>Snow Removal</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiYj-Ab1s4rm4s-22XW-kApIQTfjw2gx0lhTpLu4Wif_eIsTTTCbPO5N5guAeeA-Aq6d5PvuY9wQXvBdxHnEhL4IOSJmFQnB52fZcQpgJkNfBjfcbziHO4rQTmBfyxh5G_bdn1jdsoHW1qsg0bFaZ9ZbYuMY1sVmLsCnV9hu3bOiwpoN1n2zhW4jlznofTsnb7b6prGETbMi1YG6NodXfCE3J2hv-NrjSuPV0d67dYDEczPPXcPI-Guf9SbgSSjahJMCYL1EkKl3qiIinsoRsiTrCWCsijQjLNNFUJlAC8hQzqTKlI5EAAkbd4PG0d-fs1558U2zs3pn2ZCEkV0KBFKKlxIlaHV9wpIudq2p0PwXw4ui1-PNaHL0WZ69t6OEUqojoP6AAVJwl0S9xhnS8</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Jaw, Da-Wei</creator><creator>Huang, Shih-Chia</creator><creator>Kuo, Sy-Yen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6896-3415</orcidid><orcidid>https://orcid.org/0000-0002-9903-5910</orcidid><orcidid>https://orcid.org/0000-0002-3021-8321</orcidid></search><sort><creationdate>20210401</creationdate><title>DesnowGAN: An Efficient Single Image Snow Removal Framework Using Cross-Resolution Lateral Connection and GANs</title><author>Jaw, Da-Wei ; Huang, Shih-Chia ; Kuo, Sy-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5e1a40ba2697bf3ee075d18baf3a4f9eefaa1b76fed61d1a07a85989f3261a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Computational complexity</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Computing time</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Generative adversarial networks</topic><topic>image enhancement</topic><topic>Image quality</topic><topic>image restoration</topic><topic>Network architecture</topic><topic>Perturbation</topic><topic>Radio frequency</topic><topic>Snow</topic><topic>Snow Removal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaw, Da-Wei</creatorcontrib><creatorcontrib>Huang, Shih-Chia</creatorcontrib><creatorcontrib>Kuo, Sy-Yen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaw, Da-Wei</au><au>Huang, Shih-Chia</au><au>Kuo, Sy-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DesnowGAN: An Efficient Single Image Snow Removal Framework Using Cross-Resolution Lateral Connection and GANs</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><spage>1342</spage><epage>1350</epage><pages>1342-1350</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we present a simple, efficient, and highly modularized network architecture for single-image snow-removal. To address the challenging snow-removal problem in terms of network interpretability and computational complexity, we employ a pyramidal hierarchical design with lateral connections across different resolutions. This design enables us to incorporate high-level semantic features with other feature maps at different scales to enrich location information and reduce computational time. In addition, a refinement stage based on recently introduced generative adversarial networks (GANs) is proposed to further improve the visual quality of the resulting snow-removed images and make a refined image and a clean image indistinguishable by a computer vision algorithm to avoid the potential perturbations of machine interpretation. Finally, atrous spatial pyramid pooling (ASPP) is adopted to probe features at multiple scales and further boost the performance. The proposed DesnowGAN (DS-GAN) performs significantly better than state-of-the-art methods quantitatively and qualitatively on the Snow100K dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2020.3003025</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6896-3415</orcidid><orcidid>https://orcid.org/0000-0002-9903-5910</orcidid><orcidid>https://orcid.org/0000-0002-3021-8321</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2021-04, Vol.31 (4), p.1342-1350
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_9119486
source IEEE Electronic Library (IEL)
subjects Algorithms
Atmospheric modeling
Computational complexity
Computer architecture
Computer vision
Computing time
deep learning
Feature extraction
Feature maps
Generative adversarial networks
image enhancement
Image quality
image restoration
Network architecture
Perturbation
Radio frequency
Snow
Snow Removal
title DesnowGAN: An Efficient Single Image Snow Removal Framework Using Cross-Resolution Lateral Connection and GANs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DesnowGAN:%20An%20Efficient%20Single%20Image%20Snow%20Removal%20Framework%20Using%20Cross-Resolution%20Lateral%20Connection%20and%20GANs&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Jaw,%20Da-Wei&rft.date=2021-04-01&rft.volume=31&rft.issue=4&rft.spage=1342&rft.epage=1350&rft.pages=1342-1350&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2020.3003025&rft_dat=%3Cproquest_RIE%3E2509291522%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509291522&rft_id=info:pmid/&rft_ieee_id=9119486&rfr_iscdi=true