Hydrogenation and Gettering Compatible p-Type Contacts for Multicrystalline Silicon Cells, Free of Light, and Elevated Temperature Induced Degradation

Results for a room temperature contacting method applied to the p -type rear surface of monocrystalline and multicrystalline solar cell structures are presented. Monocrystalline silicon devices with the rear contacts prepared using the point contacting by localized dielectric breakdown method are re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2020-09, Vol.10 (5), p.1232-1238
Hauptverfasser: Western, Ned J., Bremner, Stephen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 5
container_start_page 1232
container_title IEEE journal of photovoltaics
container_volume 10
creator Western, Ned J.
Bremner, Stephen P.
description Results for a room temperature contacting method applied to the p -type rear surface of monocrystalline and multicrystalline solar cell structures are presented. Monocrystalline silicon devices with the rear contacts prepared using the point contacting by localized dielectric breakdown method are reported with an efficiency of 19.2%. The devices show improved measurements of key performance metrics of ρ c of 1.6 ± 0.8 mΩcm 2 and J 0 c of 2100 ± 650 fAcm −2 . This contacting approach is also demonstrated for multicrystalline silicon cells, with no evidence of parasitic breakdown at grain boundary sites. The multicrystalline device implementation highlights a key advantage of this contacting method, namely a relatively free choice of annealing temperature. This flexibility allows process optimization such that the activation of light-and-elevated-temperature-induced degradation is prevented in hydrogenated multicrystalline silicon, while still maximizing the benefits to bulk lifetime.
doi_str_mv 10.1109/JPHOTOV.2020.2999869
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9119404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9119404</ieee_id><sourcerecordid>2436602896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-73f87f4365b0129ba51f887304c9c0dd9ef328760c26cd5d0169e8980eb125f13</originalsourceid><addsrcrecordid>eNo9kd1OGzEQhVdVkYoCTwAXlnqbDf7ZdexLlAYCCkqlBm5Xjj1OHTm7i-1Fyov0eTEkdG5mdDTnm5FOUVwTPCEEy5vH34vVevUyoZjiCZVSCi6_FeeU1LxkFWbfv2YmyI_iMsYdzsVxzXl1XvxbHEzottCq5LoWqdage0gJgmu3aNbt-6xvPKC-XB96yEqblE4R2S6gp8Enp8MhJuW9awH9cd7pTJmB93GM7gIA6ixauu3fNP5kzz28qQQGrWHfQ1BpCIAeWjPorP2CbVDm85GL4swqH-Hy1EfF8918PVuUy9X9w-x2WWpaiVROmRVTWzFebzChcqNqYoWYMlxpqbExEiyjYsqxplyb2mDCJQgpMGwIrS1ho-LnkduH7nWAmJpdN4Q2n2xoxnJMheR5qzpu6dDFGMA2fXB7FQ4Nwc1HCM0phOYjhOYUQrZdHW0OAP5bJCGywhV7B8H0hRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436602896</pqid></control><display><type>article</type><title>Hydrogenation and Gettering Compatible p-Type Contacts for Multicrystalline Silicon Cells, Free of Light, and Elevated Temperature Induced Degradation</title><source>IEEE Electronic Library (IEL)</source><creator>Western, Ned J. ; Bremner, Stephen P.</creator><creatorcontrib>Western, Ned J. ; Bremner, Stephen P.</creatorcontrib><description>Results for a room temperature contacting method applied to the p -type rear surface of monocrystalline and multicrystalline solar cell structures are presented. Monocrystalline silicon devices with the rear contacts prepared using the point contacting by localized dielectric breakdown method are reported with an efficiency of 19.2%. The devices show improved measurements of key performance metrics of ρ c of 1.6 ± 0.8 mΩcm 2 and J 0 c of 2100 ± 650 fAcm −2 . This contacting approach is also demonstrated for multicrystalline silicon cells, with no evidence of parasitic breakdown at grain boundary sites. The multicrystalline device implementation highlights a key advantage of this contacting method, namely a relatively free choice of annealing temperature. This flexibility allows process optimization such that the activation of light-and-elevated-temperature-induced degradation is prevented in hydrogenated multicrystalline silicon, while still maximizing the benefits to bulk lifetime.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2020.2999869</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Degradation ; Dielectric breakdown ; Dielectrics ; Gettering ; Grain boundaries ; High temperature ; Laser doping ; light-and-elevated-temperature-induced degradation (LeTID) ; Metals ; multicrystalline silicon (mc-Si) ; Optimization ; Performance measurement ; Photodegradation ; Photovoltaic cells ; Room temperature ; Silicon ; Silicon devices ; silicon solar cells ; Solar cells ; Surface emitting lasers ; Surface treatment</subject><ispartof>IEEE journal of photovoltaics, 2020-09, Vol.10 (5), p.1232-1238</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c248t-73f87f4365b0129ba51f887304c9c0dd9ef328760c26cd5d0169e8980eb125f13</cites><orcidid>0000-0001-9308-2401 ; 0000-0003-3160-0482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9119404$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9119404$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Western, Ned J.</creatorcontrib><creatorcontrib>Bremner, Stephen P.</creatorcontrib><title>Hydrogenation and Gettering Compatible p-Type Contacts for Multicrystalline Silicon Cells, Free of Light, and Elevated Temperature Induced Degradation</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Results for a room temperature contacting method applied to the p -type rear surface of monocrystalline and multicrystalline solar cell structures are presented. Monocrystalline silicon devices with the rear contacts prepared using the point contacting by localized dielectric breakdown method are reported with an efficiency of 19.2%. The devices show improved measurements of key performance metrics of ρ c of 1.6 ± 0.8 mΩcm 2 and J 0 c of 2100 ± 650 fAcm −2 . This contacting approach is also demonstrated for multicrystalline silicon cells, with no evidence of parasitic breakdown at grain boundary sites. The multicrystalline device implementation highlights a key advantage of this contacting method, namely a relatively free choice of annealing temperature. This flexibility allows process optimization such that the activation of light-and-elevated-temperature-induced degradation is prevented in hydrogenated multicrystalline silicon, while still maximizing the benefits to bulk lifetime.</description><subject>Degradation</subject><subject>Dielectric breakdown</subject><subject>Dielectrics</subject><subject>Gettering</subject><subject>Grain boundaries</subject><subject>High temperature</subject><subject>Laser doping</subject><subject>light-and-elevated-temperature-induced degradation (LeTID)</subject><subject>Metals</subject><subject>multicrystalline silicon (mc-Si)</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Photodegradation</subject><subject>Photovoltaic cells</subject><subject>Room temperature</subject><subject>Silicon</subject><subject>Silicon devices</subject><subject>silicon solar cells</subject><subject>Solar cells</subject><subject>Surface emitting lasers</subject><subject>Surface treatment</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kd1OGzEQhVdVkYoCTwAXlnqbDf7ZdexLlAYCCkqlBm5Xjj1OHTm7i-1Fyov0eTEkdG5mdDTnm5FOUVwTPCEEy5vH34vVevUyoZjiCZVSCi6_FeeU1LxkFWbfv2YmyI_iMsYdzsVxzXl1XvxbHEzottCq5LoWqdage0gJgmu3aNbt-6xvPKC-XB96yEqblE4R2S6gp8Enp8MhJuW9awH9cd7pTJmB93GM7gIA6ixauu3fNP5kzz28qQQGrWHfQ1BpCIAeWjPorP2CbVDm85GL4swqH-Hy1EfF8918PVuUy9X9w-x2WWpaiVROmRVTWzFebzChcqNqYoWYMlxpqbExEiyjYsqxplyb2mDCJQgpMGwIrS1ho-LnkduH7nWAmJpdN4Q2n2xoxnJMheR5qzpu6dDFGMA2fXB7FQ4Nwc1HCM0phOYjhOYUQrZdHW0OAP5bJCGywhV7B8H0hRk</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Western, Ned J.</creator><creator>Bremner, Stephen P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9308-2401</orcidid><orcidid>https://orcid.org/0000-0003-3160-0482</orcidid></search><sort><creationdate>20200901</creationdate><title>Hydrogenation and Gettering Compatible p-Type Contacts for Multicrystalline Silicon Cells, Free of Light, and Elevated Temperature Induced Degradation</title><author>Western, Ned J. ; Bremner, Stephen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-73f87f4365b0129ba51f887304c9c0dd9ef328760c26cd5d0169e8980eb125f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Degradation</topic><topic>Dielectric breakdown</topic><topic>Dielectrics</topic><topic>Gettering</topic><topic>Grain boundaries</topic><topic>High temperature</topic><topic>Laser doping</topic><topic>light-and-elevated-temperature-induced degradation (LeTID)</topic><topic>Metals</topic><topic>multicrystalline silicon (mc-Si)</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Photodegradation</topic><topic>Photovoltaic cells</topic><topic>Room temperature</topic><topic>Silicon</topic><topic>Silicon devices</topic><topic>silicon solar cells</topic><topic>Solar cells</topic><topic>Surface emitting lasers</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Western, Ned J.</creatorcontrib><creatorcontrib>Bremner, Stephen P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Western, Ned J.</au><au>Bremner, Stephen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogenation and Gettering Compatible p-Type Contacts for Multicrystalline Silicon Cells, Free of Light, and Elevated Temperature Induced Degradation</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>1232</spage><epage>1238</epage><pages>1232-1238</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Results for a room temperature contacting method applied to the p -type rear surface of monocrystalline and multicrystalline solar cell structures are presented. Monocrystalline silicon devices with the rear contacts prepared using the point contacting by localized dielectric breakdown method are reported with an efficiency of 19.2%. The devices show improved measurements of key performance metrics of ρ c of 1.6 ± 0.8 mΩcm 2 and J 0 c of 2100 ± 650 fAcm −2 . This contacting approach is also demonstrated for multicrystalline silicon cells, with no evidence of parasitic breakdown at grain boundary sites. The multicrystalline device implementation highlights a key advantage of this contacting method, namely a relatively free choice of annealing temperature. This flexibility allows process optimization such that the activation of light-and-elevated-temperature-induced degradation is prevented in hydrogenated multicrystalline silicon, while still maximizing the benefits to bulk lifetime.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2020.2999869</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9308-2401</orcidid><orcidid>https://orcid.org/0000-0003-3160-0482</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2020-09, Vol.10 (5), p.1232-1238
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_9119404
source IEEE Electronic Library (IEL)
subjects Degradation
Dielectric breakdown
Dielectrics
Gettering
Grain boundaries
High temperature
Laser doping
light-and-elevated-temperature-induced degradation (LeTID)
Metals
multicrystalline silicon (mc-Si)
Optimization
Performance measurement
Photodegradation
Photovoltaic cells
Room temperature
Silicon
Silicon devices
silicon solar cells
Solar cells
Surface emitting lasers
Surface treatment
title Hydrogenation and Gettering Compatible p-Type Contacts for Multicrystalline Silicon Cells, Free of Light, and Elevated Temperature Induced Degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogenation%20and%20Gettering%20Compatible%20p-Type%20Contacts%20for%20Multicrystalline%20Silicon%20Cells,%20Free%20of%20Light,%20and%20Elevated%20Temperature%20Induced%20Degradation&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Western,%20Ned%20J.&rft.date=2020-09-01&rft.volume=10&rft.issue=5&rft.spage=1232&rft.epage=1238&rft.pages=1232-1238&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2020.2999869&rft_dat=%3Cproquest_RIE%3E2436602896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436602896&rft_id=info:pmid/&rft_ieee_id=9119404&rfr_iscdi=true