Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model
Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.114487-114500 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114500 |
---|---|
container_issue | |
container_start_page | 114487 |
container_title | IEEE access |
container_volume | 8 |
creator | Tang, Peng Peng, Kaixiang Dong, Jie Zhang, Kai Zhao, Shanshan |
description | Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model, which combines with Gaussian mixture and VAE, is proposed to monitor nonlinear processes with multiple operating modes. Due to the Gaussian mixture distribution limitation in latent variable space, GMVAE can not only automatically extract features of the nonlinear system, but also make these features follow Gaussian mixture distribution. Based on Gaussian mixture distribution in latent variable space and the reconstruction error, two probability monitoring indexes are constructed, whose control limits can be determined by \chi ^{2} distribution. TE benchmark data and real hot strip mill process (HSMP) data have been used to verify the effectiveness of the proposed method. |
doi_str_mv | 10.1109/ACCESS.2020.3003095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9119397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9119397</ieee_id><doaj_id>oai_doaj_org_article_09603b5575d6427098f64f3ab3b5b5e6</doaj_id><sourcerecordid>2454612537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ca8bc62f22e8cd184861dd3f73fbece16db64730bba733a631b9d62e02a87f923</originalsourceid><addsrcrecordid>eNpNkUtrGzEUhYfSQEOaX5CNoGu7eoyk0dKYNA3ESSCPLoWkubJlpiNX0pR2098eORNCtbni3PMdIU7TXBC8JASrr6v1-vLhYUkxxUuGMcOKf2hOKRFqwTgTH_-7f2rOc97jeroqcXna_NvEMZSYwrhF0aPbOA5hBJPQfYoOcoaMfoSyQ5tpKOEwALo7QDLlaN_Evm4fdylO2x0ylf0NA7oyU87BjGgT_pQpAXo2KVQgjmZAq6lEGF0F0ys-fG5OvBkynL_Ns-bp2-Xj-vvi5u7qer26WbgWd2XhTGedoJ5S6FxPurYTpO-Zl8xbcEBEb0UrGbbWSMaMYMSqXlDA1HTSK8rOmus5t49mrw8p_DTpr44m6Fchpq02qQQ3gMZKYGY5l7wXLZVYdV60nhlbRctB1Kwvc9YhxV8T5KL3cUr1e1nTlreCUM5kdbHZ5VLMOYF_f5VgfexNz73pY2_6rbdKXcxUAIB3QhGimJLsBX2ElSs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454612537</pqid></control><display><type>article</type><title>Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tang, Peng ; Peng, Kaixiang ; Dong, Jie ; Zhang, Kai ; Zhao, Shanshan</creator><creatorcontrib>Tang, Peng ; Peng, Kaixiang ; Dong, Jie ; Zhang, Kai ; Zhao, Shanshan</creatorcontrib><description>Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model, which combines with Gaussian mixture and VAE, is proposed to monitor nonlinear processes with multiple operating modes. Due to the Gaussian mixture distribution limitation in latent variable space, GMVAE can not only automatically extract features of the nonlinear system, but also make these features follow Gaussian mixture distribution. Based on Gaussian mixture distribution in latent variable space and the reconstruction error, two probability monitoring indexes are constructed, whose control limits can be determined by <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> distribution. TE benchmark data and real hot strip mill process (HSMP) data have been used to verify the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3003095</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayes methods ; Feature extraction ; Gaussian distribution ; Gaussian mixture variational autoencoder ; hot strip mill process ; Hot strip mills ; Kernel ; Monitoring ; multiple operating modes ; Nonlinear systems ; Nonlinearity ; Principal component analysis ; Probabilistic logic ; Process monitoring ; Raw materials ; Strip mills</subject><ispartof>IEEE access, 2020, Vol.8, p.114487-114500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ca8bc62f22e8cd184861dd3f73fbece16db64730bba733a631b9d62e02a87f923</citedby><cites>FETCH-LOGICAL-c408t-ca8bc62f22e8cd184861dd3f73fbece16db64730bba733a631b9d62e02a87f923</cites><orcidid>0000-0001-7585-6637 ; 0000-0001-8314-3047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9119397$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Tang, Peng</creatorcontrib><creatorcontrib>Peng, Kaixiang</creatorcontrib><creatorcontrib>Dong, Jie</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhao, Shanshan</creatorcontrib><title>Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model, which combines with Gaussian mixture and VAE, is proposed to monitor nonlinear processes with multiple operating modes. Due to the Gaussian mixture distribution limitation in latent variable space, GMVAE can not only automatically extract features of the nonlinear system, but also make these features follow Gaussian mixture distribution. Based on Gaussian mixture distribution in latent variable space and the reconstruction error, two probability monitoring indexes are constructed, whose control limits can be determined by <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> distribution. TE benchmark data and real hot strip mill process (HSMP) data have been used to verify the effectiveness of the proposed method.</description><subject>Bayes methods</subject><subject>Feature extraction</subject><subject>Gaussian distribution</subject><subject>Gaussian mixture variational autoencoder</subject><subject>hot strip mill process</subject><subject>Hot strip mills</subject><subject>Kernel</subject><subject>Monitoring</subject><subject>multiple operating modes</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Principal component analysis</subject><subject>Probabilistic logic</subject><subject>Process monitoring</subject><subject>Raw materials</subject><subject>Strip mills</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtrGzEUhYfSQEOaX5CNoGu7eoyk0dKYNA3ESSCPLoWkubJlpiNX0pR2098eORNCtbni3PMdIU7TXBC8JASrr6v1-vLhYUkxxUuGMcOKf2hOKRFqwTgTH_-7f2rOc97jeroqcXna_NvEMZSYwrhF0aPbOA5hBJPQfYoOcoaMfoSyQ5tpKOEwALo7QDLlaN_Evm4fdylO2x0ylf0NA7oyU87BjGgT_pQpAXo2KVQgjmZAq6lEGF0F0ys-fG5OvBkynL_Ns-bp2-Xj-vvi5u7qer26WbgWd2XhTGedoJ5S6FxPurYTpO-Zl8xbcEBEb0UrGbbWSMaMYMSqXlDA1HTSK8rOmus5t49mrw8p_DTpr44m6Fchpq02qQQ3gMZKYGY5l7wXLZVYdV60nhlbRctB1Kwvc9YhxV8T5KL3cUr1e1nTlreCUM5kdbHZ5VLMOYF_f5VgfexNz73pY2_6rbdKXcxUAIB3QhGimJLsBX2ElSs</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tang, Peng</creator><creator>Peng, Kaixiang</creator><creator>Dong, Jie</creator><creator>Zhang, Kai</creator><creator>Zhao, Shanshan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7585-6637</orcidid><orcidid>https://orcid.org/0000-0001-8314-3047</orcidid></search><sort><creationdate>2020</creationdate><title>Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model</title><author>Tang, Peng ; Peng, Kaixiang ; Dong, Jie ; Zhang, Kai ; Zhao, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ca8bc62f22e8cd184861dd3f73fbece16db64730bba733a631b9d62e02a87f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes methods</topic><topic>Feature extraction</topic><topic>Gaussian distribution</topic><topic>Gaussian mixture variational autoencoder</topic><topic>hot strip mill process</topic><topic>Hot strip mills</topic><topic>Kernel</topic><topic>Monitoring</topic><topic>multiple operating modes</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Principal component analysis</topic><topic>Probabilistic logic</topic><topic>Process monitoring</topic><topic>Raw materials</topic><topic>Strip mills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Peng</creatorcontrib><creatorcontrib>Peng, Kaixiang</creatorcontrib><creatorcontrib>Dong, Jie</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhao, Shanshan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Peng</au><au>Peng, Kaixiang</au><au>Dong, Jie</au><au>Zhang, Kai</au><au>Zhao, Shanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>114487</spage><epage>114500</epage><pages>114487-114500</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model, which combines with Gaussian mixture and VAE, is proposed to monitor nonlinear processes with multiple operating modes. Due to the Gaussian mixture distribution limitation in latent variable space, GMVAE can not only automatically extract features of the nonlinear system, but also make these features follow Gaussian mixture distribution. Based on Gaussian mixture distribution in latent variable space and the reconstruction error, two probability monitoring indexes are constructed, whose control limits can be determined by <inline-formula> <tex-math notation="LaTeX">\chi ^{2} </tex-math></inline-formula> distribution. TE benchmark data and real hot strip mill process (HSMP) data have been used to verify the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3003095</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7585-6637</orcidid><orcidid>https://orcid.org/0000-0001-8314-3047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.114487-114500 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9119397 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Bayes methods Feature extraction Gaussian distribution Gaussian mixture variational autoencoder hot strip mill process Hot strip mills Kernel Monitoring multiple operating modes Nonlinear systems Nonlinearity Principal component analysis Probabilistic logic Process monitoring Raw materials Strip mills |
title | Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20of%20Nonlinear%20Processes%20With%20Multiple%20Operating%20Modes%20Through%20a%20Novel%20Gaussian%20Mixture%20Variational%20Autoencoder%20Model&rft.jtitle=IEEE%20access&rft.au=Tang,%20Peng&rft.date=2020&rft.volume=8&rft.spage=114487&rft.epage=114500&rft.pages=114487-114500&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3003095&rft_dat=%3Cproquest_ieee_%3E2454612537%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454612537&rft_id=info:pmid/&rft_ieee_id=9119397&rft_doaj_id=oai_doaj_org_article_09603b5575d6427098f64f3ab3b5b5e6&rfr_iscdi=true |