Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model

Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.114487-114500
Hauptverfasser: Tang, Peng, Peng, Kaixiang, Dong, Jie, Zhang, Kai, Zhao, Shanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114500
container_issue
container_start_page 114487
container_title IEEE access
container_volume 8
creator Tang, Peng
Peng, Kaixiang
Dong, Jie
Zhang, Kai
Zhao, Shanshan
description Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model, which combines with Gaussian mixture and VAE, is proposed to monitor nonlinear processes with multiple operating modes. Due to the Gaussian mixture distribution limitation in latent variable space, GMVAE can not only automatically extract features of the nonlinear system, but also make these features follow Gaussian mixture distribution. Based on Gaussian mixture distribution in latent variable space and the reconstruction error, two probability monitoring indexes are constructed, whose control limits can be determined by \chi ^{2} distribution. TE benchmark data and real hot strip mill process (HSMP) data have been used to verify the effectiveness of the proposed method.
doi_str_mv 10.1109/ACCESS.2020.3003095
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9119397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9119397</ieee_id><doaj_id>oai_doaj_org_article_09603b5575d6427098f64f3ab3b5b5e6</doaj_id><sourcerecordid>2454612537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ca8bc62f22e8cd184861dd3f73fbece16db64730bba733a631b9d62e02a87f923</originalsourceid><addsrcrecordid>eNpNkUtrGzEUhYfSQEOaX5CNoGu7eoyk0dKYNA3ESSCPLoWkubJlpiNX0pR2098eORNCtbni3PMdIU7TXBC8JASrr6v1-vLhYUkxxUuGMcOKf2hOKRFqwTgTH_-7f2rOc97jeroqcXna_NvEMZSYwrhF0aPbOA5hBJPQfYoOcoaMfoSyQ5tpKOEwALo7QDLlaN_Evm4fdylO2x0ylf0NA7oyU87BjGgT_pQpAXo2KVQgjmZAq6lEGF0F0ys-fG5OvBkynL_Ns-bp2-Xj-vvi5u7qer26WbgWd2XhTGedoJ5S6FxPurYTpO-Zl8xbcEBEb0UrGbbWSMaMYMSqXlDA1HTSK8rOmus5t49mrw8p_DTpr44m6Fchpq02qQQ3gMZKYGY5l7wXLZVYdV60nhlbRctB1Kwvc9YhxV8T5KL3cUr1e1nTlreCUM5kdbHZ5VLMOYF_f5VgfexNz73pY2_6rbdKXcxUAIB3QhGimJLsBX2ElSs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454612537</pqid></control><display><type>article</type><title>Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tang, Peng ; Peng, Kaixiang ; Dong, Jie ; Zhang, Kai ; Zhao, Shanshan</creator><creatorcontrib>Tang, Peng ; Peng, Kaixiang ; Dong, Jie ; Zhang, Kai ; Zhao, Shanshan</creatorcontrib><description>Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model, which combines with Gaussian mixture and VAE, is proposed to monitor nonlinear processes with multiple operating modes. Due to the Gaussian mixture distribution limitation in latent variable space, GMVAE can not only automatically extract features of the nonlinear system, but also make these features follow Gaussian mixture distribution. Based on Gaussian mixture distribution in latent variable space and the reconstruction error, two probability monitoring indexes are constructed, whose control limits can be determined by &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\chi ^{2} &lt;/tex-math&gt;&lt;/inline-formula&gt; distribution. TE benchmark data and real hot strip mill process (HSMP) data have been used to verify the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3003095</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayes methods ; Feature extraction ; Gaussian distribution ; Gaussian mixture variational autoencoder ; hot strip mill process ; Hot strip mills ; Kernel ; Monitoring ; multiple operating modes ; Nonlinear systems ; Nonlinearity ; Principal component analysis ; Probabilistic logic ; Process monitoring ; Raw materials ; Strip mills</subject><ispartof>IEEE access, 2020, Vol.8, p.114487-114500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ca8bc62f22e8cd184861dd3f73fbece16db64730bba733a631b9d62e02a87f923</citedby><cites>FETCH-LOGICAL-c408t-ca8bc62f22e8cd184861dd3f73fbece16db64730bba733a631b9d62e02a87f923</cites><orcidid>0000-0001-7585-6637 ; 0000-0001-8314-3047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9119397$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Tang, Peng</creatorcontrib><creatorcontrib>Peng, Kaixiang</creatorcontrib><creatorcontrib>Dong, Jie</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhao, Shanshan</creatorcontrib><title>Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model, which combines with Gaussian mixture and VAE, is proposed to monitor nonlinear processes with multiple operating modes. Due to the Gaussian mixture distribution limitation in latent variable space, GMVAE can not only automatically extract features of the nonlinear system, but also make these features follow Gaussian mixture distribution. Based on Gaussian mixture distribution in latent variable space and the reconstruction error, two probability monitoring indexes are constructed, whose control limits can be determined by &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\chi ^{2} &lt;/tex-math&gt;&lt;/inline-formula&gt; distribution. TE benchmark data and real hot strip mill process (HSMP) data have been used to verify the effectiveness of the proposed method.</description><subject>Bayes methods</subject><subject>Feature extraction</subject><subject>Gaussian distribution</subject><subject>Gaussian mixture variational autoencoder</subject><subject>hot strip mill process</subject><subject>Hot strip mills</subject><subject>Kernel</subject><subject>Monitoring</subject><subject>multiple operating modes</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Principal component analysis</subject><subject>Probabilistic logic</subject><subject>Process monitoring</subject><subject>Raw materials</subject><subject>Strip mills</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtrGzEUhYfSQEOaX5CNoGu7eoyk0dKYNA3ESSCPLoWkubJlpiNX0pR2098eORNCtbni3PMdIU7TXBC8JASrr6v1-vLhYUkxxUuGMcOKf2hOKRFqwTgTH_-7f2rOc97jeroqcXna_NvEMZSYwrhF0aPbOA5hBJPQfYoOcoaMfoSyQ5tpKOEwALo7QDLlaN_Evm4fdylO2x0ylf0NA7oyU87BjGgT_pQpAXo2KVQgjmZAq6lEGF0F0ys-fG5OvBkynL_Ns-bp2-Xj-vvi5u7qer26WbgWd2XhTGedoJ5S6FxPurYTpO-Zl8xbcEBEb0UrGbbWSMaMYMSqXlDA1HTSK8rOmus5t49mrw8p_DTpr44m6Fchpq02qQQ3gMZKYGY5l7wXLZVYdV60nhlbRctB1Kwvc9YhxV8T5KL3cUr1e1nTlreCUM5kdbHZ5VLMOYF_f5VgfexNz73pY2_6rbdKXcxUAIB3QhGimJLsBX2ElSs</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tang, Peng</creator><creator>Peng, Kaixiang</creator><creator>Dong, Jie</creator><creator>Zhang, Kai</creator><creator>Zhao, Shanshan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7585-6637</orcidid><orcidid>https://orcid.org/0000-0001-8314-3047</orcidid></search><sort><creationdate>2020</creationdate><title>Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model</title><author>Tang, Peng ; Peng, Kaixiang ; Dong, Jie ; Zhang, Kai ; Zhao, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ca8bc62f22e8cd184861dd3f73fbece16db64730bba733a631b9d62e02a87f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes methods</topic><topic>Feature extraction</topic><topic>Gaussian distribution</topic><topic>Gaussian mixture variational autoencoder</topic><topic>hot strip mill process</topic><topic>Hot strip mills</topic><topic>Kernel</topic><topic>Monitoring</topic><topic>multiple operating modes</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Principal component analysis</topic><topic>Probabilistic logic</topic><topic>Process monitoring</topic><topic>Raw materials</topic><topic>Strip mills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Peng</creatorcontrib><creatorcontrib>Peng, Kaixiang</creatorcontrib><creatorcontrib>Dong, Jie</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhao, Shanshan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Peng</au><au>Peng, Kaixiang</au><au>Dong, Jie</au><au>Zhang, Kai</au><au>Zhao, Shanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>114487</spage><epage>114500</epage><pages>114487-114500</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Customized production, quality variation of raw materials and other factors make industrial processes work in multiple operating modes. In general, complex industrial processes have strong nonlinearity under each operating mode. In this paper, a Gaussian mixture variational autoencoder (GMVAE) model, which combines with Gaussian mixture and VAE, is proposed to monitor nonlinear processes with multiple operating modes. Due to the Gaussian mixture distribution limitation in latent variable space, GMVAE can not only automatically extract features of the nonlinear system, but also make these features follow Gaussian mixture distribution. Based on Gaussian mixture distribution in latent variable space and the reconstruction error, two probability monitoring indexes are constructed, whose control limits can be determined by &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\chi ^{2} &lt;/tex-math&gt;&lt;/inline-formula&gt; distribution. TE benchmark data and real hot strip mill process (HSMP) data have been used to verify the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3003095</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7585-6637</orcidid><orcidid>https://orcid.org/0000-0001-8314-3047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.114487-114500
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9119397
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Bayes methods
Feature extraction
Gaussian distribution
Gaussian mixture variational autoencoder
hot strip mill process
Hot strip mills
Kernel
Monitoring
multiple operating modes
Nonlinear systems
Nonlinearity
Principal component analysis
Probabilistic logic
Process monitoring
Raw materials
Strip mills
title Monitoring of Nonlinear Processes With Multiple Operating Modes Through a Novel Gaussian Mixture Variational Autoencoder Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20of%20Nonlinear%20Processes%20With%20Multiple%20Operating%20Modes%20Through%20a%20Novel%20Gaussian%20Mixture%20Variational%20Autoencoder%20Model&rft.jtitle=IEEE%20access&rft.au=Tang,%20Peng&rft.date=2020&rft.volume=8&rft.spage=114487&rft.epage=114500&rft.pages=114487-114500&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3003095&rft_dat=%3Cproquest_ieee_%3E2454612537%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454612537&rft_id=info:pmid/&rft_ieee_id=9119397&rft_doaj_id=oai_doaj_org_article_09603b5575d6427098f64f3ab3b5b5e6&rfr_iscdi=true