Wideband High-Gain Circularly Polarized Resonant Cavity Antenna With a Thin Complementary Partially Reflective Surface
In this communication, a new wideband resonant cavity antenna (RCA) with circular polarization is proposed. A wideband circularly polarized (CP) crossed-dipole antenna acts as the main radiating element inside the cavity. The dipole is designed based on self-complementary structures and utilizes sev...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2021-01, Vol.69 (1), p.532-537 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | 1 |
container_start_page | 532 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 69 |
creator | Goudarzi, A. Movahhedi, M. Honari, M. M. Saghlatoon, H. Mirzavand, R. Mousavi, P. |
description | In this communication, a new wideband resonant cavity antenna (RCA) with circular polarization is proposed. A wideband circularly polarized (CP) crossed-dipole antenna acts as the main radiating element inside the cavity. The dipole is designed based on self-complementary structures and utilizes several parasitic patches and posts to obtain wideband circular polarization and impedance characteristics. The incorporation of the proposed antenna with a new broadband thin single-layer dual-sided partially reflective surface (PRS) designed based on the complementary structure contributes to the improvement of the antenna gain in a broad bandwidth. The fabrication of the PRS on both sides of a thin single laminate substrate reduces thickness of the PRS compared with conventional multilayer PRS structures, in which the layers are separated by a gap distance. The measured results, which are in agreement with the simulations, show that the proposed antenna has a maximum measured gain of 12.5 dBic, while the 3 dB gain bandwidth and 3 dB axial ratio bandwidths are 39% and 43.37%, respectively. The measured results demonstrate the wideband functionality of the proposed antenna. |
doi_str_mv | 10.1109/TAP.2020.3001443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9119198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9119198</ieee_id><sourcerecordid>2475959966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-58b045028f99a90fe1ed06b2958a41598015d6fb9e520b4f6b010b3f25ad94223</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSJrU5jqKbMHDMybyFtH1xGV0603Qw_3ozNjw9ePy-3-N9CN1TMqKUyKfleD5ihJFRSgjlPL1AAypEnjDG6CUaxGWeSJZ9XaObrtscMznnA7Rf2RpK7Wo8td_rZKKtw4X1Vd9o3xzwvI3T_kKNF9C1TruAC7234YDHLoBzGq9sWGONl-sj2G53DWzBBe0jq32wuoktCzANVMHuAX_03ugKbtGV0U0Hd-c5RJ-vL8timszeJ2_FeJZUTNKQiLwkXBCWGym1JAYo1CQrmRS55lTInFBRZ6aUIBgpuclKQkmZGiZ0LTlj6RA9nnp3vv3poQtq0_bexZOK8WchhZRZFlPklKp823UejNp5u40_KErU0a6KdtXRrjrbjcjDCbEA8B-XlEoq8_QPJ3R2CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475959966</pqid></control><display><type>article</type><title>Wideband High-Gain Circularly Polarized Resonant Cavity Antenna With a Thin Complementary Partially Reflective Surface</title><source>IEEE Electronic Library Online</source><creator>Goudarzi, A. ; Movahhedi, M. ; Honari, M. M. ; Saghlatoon, H. ; Mirzavand, R. ; Mousavi, P.</creator><creatorcontrib>Goudarzi, A. ; Movahhedi, M. ; Honari, M. M. ; Saghlatoon, H. ; Mirzavand, R. ; Mousavi, P.</creatorcontrib><description>In this communication, a new wideband resonant cavity antenna (RCA) with circular polarization is proposed. A wideband circularly polarized (CP) crossed-dipole antenna acts as the main radiating element inside the cavity. The dipole is designed based on self-complementary structures and utilizes several parasitic patches and posts to obtain wideband circular polarization and impedance characteristics. The incorporation of the proposed antenna with a new broadband thin single-layer dual-sided partially reflective surface (PRS) designed based on the complementary structure contributes to the improvement of the antenna gain in a broad bandwidth. The fabrication of the PRS on both sides of a thin single laminate substrate reduces thickness of the PRS compared with conventional multilayer PRS structures, in which the layers are separated by a gap distance. The measured results, which are in agreement with the simulations, show that the proposed antenna has a maximum measured gain of 12.5 dBic, while the 3 dB gain bandwidth and 3 dB axial ratio bandwidths are 39% and 43.37%, respectively. The measured results demonstrate the wideband functionality of the proposed antenna.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2020.3001443</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna gain ; Antennas ; Bandwidths ; Broadband ; Broadband antennas ; Circular polarization ; Circularly polarized (CP) ; crossed bowtie dipole antenna ; Dipole antennas ; Electrons ; Gain ; High gain ; Impedance ; Laminates ; Monolayers ; Multilayers ; Parasitic elements (antennas) ; partially reflective surface (PRS) ; resonant cavity antenna (RCA) ; Substrates ; Wideband</subject><ispartof>IEEE transactions on antennas and propagation, 2021-01, Vol.69 (1), p.532-537</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-58b045028f99a90fe1ed06b2958a41598015d6fb9e520b4f6b010b3f25ad94223</citedby><cites>FETCH-LOGICAL-c291t-58b045028f99a90fe1ed06b2958a41598015d6fb9e520b4f6b010b3f25ad94223</cites><orcidid>0000-0001-9153-2149 ; 0000-0001-8736-3418 ; 0000-0002-7067-6669 ; 0000-0002-3070-6667 ; 0000-0002-9030-4774 ; 0000-0002-2999-8201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9119198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9119198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goudarzi, A.</creatorcontrib><creatorcontrib>Movahhedi, M.</creatorcontrib><creatorcontrib>Honari, M. M.</creatorcontrib><creatorcontrib>Saghlatoon, H.</creatorcontrib><creatorcontrib>Mirzavand, R.</creatorcontrib><creatorcontrib>Mousavi, P.</creatorcontrib><title>Wideband High-Gain Circularly Polarized Resonant Cavity Antenna With a Thin Complementary Partially Reflective Surface</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>In this communication, a new wideband resonant cavity antenna (RCA) with circular polarization is proposed. A wideband circularly polarized (CP) crossed-dipole antenna acts as the main radiating element inside the cavity. The dipole is designed based on self-complementary structures and utilizes several parasitic patches and posts to obtain wideband circular polarization and impedance characteristics. The incorporation of the proposed antenna with a new broadband thin single-layer dual-sided partially reflective surface (PRS) designed based on the complementary structure contributes to the improvement of the antenna gain in a broad bandwidth. The fabrication of the PRS on both sides of a thin single laminate substrate reduces thickness of the PRS compared with conventional multilayer PRS structures, in which the layers are separated by a gap distance. The measured results, which are in agreement with the simulations, show that the proposed antenna has a maximum measured gain of 12.5 dBic, while the 3 dB gain bandwidth and 3 dB axial ratio bandwidths are 39% and 43.37%, respectively. The measured results demonstrate the wideband functionality of the proposed antenna.</description><subject>Antenna gain</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>Circular polarization</subject><subject>Circularly polarized (CP)</subject><subject>crossed bowtie dipole antenna</subject><subject>Dipole antennas</subject><subject>Electrons</subject><subject>Gain</subject><subject>High gain</subject><subject>Impedance</subject><subject>Laminates</subject><subject>Monolayers</subject><subject>Multilayers</subject><subject>Parasitic elements (antennas)</subject><subject>partially reflective surface (PRS)</subject><subject>resonant cavity antenna (RCA)</subject><subject>Substrates</subject><subject>Wideband</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSJrU5jqKbMHDMybyFtH1xGV0603Qw_3ozNjw9ePy-3-N9CN1TMqKUyKfleD5ihJFRSgjlPL1AAypEnjDG6CUaxGWeSJZ9XaObrtscMznnA7Rf2RpK7Wo8td_rZKKtw4X1Vd9o3xzwvI3T_kKNF9C1TruAC7234YDHLoBzGq9sWGONl-sj2G53DWzBBe0jq32wuoktCzANVMHuAX_03ugKbtGV0U0Hd-c5RJ-vL8timszeJ2_FeJZUTNKQiLwkXBCWGym1JAYo1CQrmRS55lTInFBRZ6aUIBgpuclKQkmZGiZ0LTlj6RA9nnp3vv3poQtq0_bexZOK8WchhZRZFlPklKp823UejNp5u40_KErU0a6KdtXRrjrbjcjDCbEA8B-XlEoq8_QPJ3R2CA</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Goudarzi, A.</creator><creator>Movahhedi, M.</creator><creator>Honari, M. M.</creator><creator>Saghlatoon, H.</creator><creator>Mirzavand, R.</creator><creator>Mousavi, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9153-2149</orcidid><orcidid>https://orcid.org/0000-0001-8736-3418</orcidid><orcidid>https://orcid.org/0000-0002-7067-6669</orcidid><orcidid>https://orcid.org/0000-0002-3070-6667</orcidid><orcidid>https://orcid.org/0000-0002-9030-4774</orcidid><orcidid>https://orcid.org/0000-0002-2999-8201</orcidid></search><sort><creationdate>202101</creationdate><title>Wideband High-Gain Circularly Polarized Resonant Cavity Antenna With a Thin Complementary Partially Reflective Surface</title><author>Goudarzi, A. ; Movahhedi, M. ; Honari, M. M. ; Saghlatoon, H. ; Mirzavand, R. ; Mousavi, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-58b045028f99a90fe1ed06b2958a41598015d6fb9e520b4f6b010b3f25ad94223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antenna gain</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>Circular polarization</topic><topic>Circularly polarized (CP)</topic><topic>crossed bowtie dipole antenna</topic><topic>Dipole antennas</topic><topic>Electrons</topic><topic>Gain</topic><topic>High gain</topic><topic>Impedance</topic><topic>Laminates</topic><topic>Monolayers</topic><topic>Multilayers</topic><topic>Parasitic elements (antennas)</topic><topic>partially reflective surface (PRS)</topic><topic>resonant cavity antenna (RCA)</topic><topic>Substrates</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goudarzi, A.</creatorcontrib><creatorcontrib>Movahhedi, M.</creatorcontrib><creatorcontrib>Honari, M. M.</creatorcontrib><creatorcontrib>Saghlatoon, H.</creatorcontrib><creatorcontrib>Mirzavand, R.</creatorcontrib><creatorcontrib>Mousavi, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goudarzi, A.</au><au>Movahhedi, M.</au><au>Honari, M. M.</au><au>Saghlatoon, H.</au><au>Mirzavand, R.</au><au>Mousavi, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wideband High-Gain Circularly Polarized Resonant Cavity Antenna With a Thin Complementary Partially Reflective Surface</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-01</date><risdate>2021</risdate><volume>69</volume><issue>1</issue><spage>532</spage><epage>537</epage><pages>532-537</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>In this communication, a new wideband resonant cavity antenna (RCA) with circular polarization is proposed. A wideband circularly polarized (CP) crossed-dipole antenna acts as the main radiating element inside the cavity. The dipole is designed based on self-complementary structures and utilizes several parasitic patches and posts to obtain wideband circular polarization and impedance characteristics. The incorporation of the proposed antenna with a new broadband thin single-layer dual-sided partially reflective surface (PRS) designed based on the complementary structure contributes to the improvement of the antenna gain in a broad bandwidth. The fabrication of the PRS on both sides of a thin single laminate substrate reduces thickness of the PRS compared with conventional multilayer PRS structures, in which the layers are separated by a gap distance. The measured results, which are in agreement with the simulations, show that the proposed antenna has a maximum measured gain of 12.5 dBic, while the 3 dB gain bandwidth and 3 dB axial ratio bandwidths are 39% and 43.37%, respectively. The measured results demonstrate the wideband functionality of the proposed antenna.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2020.3001443</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9153-2149</orcidid><orcidid>https://orcid.org/0000-0001-8736-3418</orcidid><orcidid>https://orcid.org/0000-0002-7067-6669</orcidid><orcidid>https://orcid.org/0000-0002-3070-6667</orcidid><orcidid>https://orcid.org/0000-0002-9030-4774</orcidid><orcidid>https://orcid.org/0000-0002-2999-8201</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2021-01, Vol.69 (1), p.532-537 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_9119198 |
source | IEEE Electronic Library Online |
subjects | Antenna gain Antennas Bandwidths Broadband Broadband antennas Circular polarization Circularly polarized (CP) crossed bowtie dipole antenna Dipole antennas Electrons Gain High gain Impedance Laminates Monolayers Multilayers Parasitic elements (antennas) partially reflective surface (PRS) resonant cavity antenna (RCA) Substrates Wideband |
title | Wideband High-Gain Circularly Polarized Resonant Cavity Antenna With a Thin Complementary Partially Reflective Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wideband%20High-Gain%20Circularly%20Polarized%20Resonant%20Cavity%20Antenna%20With%20a%20Thin%20Complementary%20Partially%20Reflective%20Surface&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Goudarzi,%20A.&rft.date=2021-01&rft.volume=69&rft.issue=1&rft.spage=532&rft.epage=537&rft.pages=532-537&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2020.3001443&rft_dat=%3Cproquest_RIE%3E2475959966%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475959966&rft_id=info:pmid/&rft_ieee_id=9119198&rfr_iscdi=true |