Large Scale Network Embedding: A Separable Approach

Many successful methods have been proposed for learning low-dimensional representations on large-scale networks, while almost all existing methods are designed in inseparable processes, learning embeddings for entire networks even when only a small proportion of nodes are of interest. This leads to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2022-04, Vol.34 (4), p.1829-1842
Hauptverfasser: Song, Guojie, Zhang, Liang, Li, Ziyao, Li, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1842
container_issue 4
container_start_page 1829
container_title IEEE transactions on knowledge and data engineering
container_volume 34
creator Song, Guojie
Zhang, Liang
Li, Ziyao
Li, Yi
description Many successful methods have been proposed for learning low-dimensional representations on large-scale networks, while almost all existing methods are designed in inseparable processes, learning embeddings for entire networks even when only a small proportion of nodes are of interest. This leads to great inconvenience, especially on large-scale or dynamic networks, where these methods become almost impossible to implement. In this paper, we formalize the problem of separated matrix factorization, based on which we elaborate a novel objective function that preserves both local and global information. We compare our SMF framework with approximate SVD algorithms and demonstrate SMF can capture more information when factorizing a given matrix. We further propose SepNE, a simple and flexible network embedding algorithm which independently learns representations for different subsets of nodes in separated processes. By implementing separability, our algorithm reduces the redundant efforts to embed irrelevant nodes, yielding scalability to large networks. To further incorporate complex information into SepNE, we discuss several methods that can be used to leverage high-order proximities in large networks. We demonstrate the effectiveness of SepNE on several real-world networks with different scales and subjects. With comparable accuracy, our approach significantly outperforms state-of-the-art baselines in running times on large networks.
doi_str_mv 10.1109/TKDE.2020.3002700
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9117196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9117196</ieee_id><sourcerecordid>2637438295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ca483c1724532dd426262e7fdaa5e062054717752a3ebf2700635c02607db5d3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcZLE8_Fmf3ott4I4kds9AD3zXZ3iiDQuoUQ_73bQMwcZpJ533knD2O3CCNEKB7m70_TEQcOIwHANcAZG6BSecqxwPM4g8RUCqkv2VXXrQAg1zkOmChtWFAyc3ZNyQftDk34TqabirxfbhePyTiZUWuDreJ63Lahse7rml3Udt3RzakP2fx5Op-8puXny9tkXKaOF2KXOitz4VBzqQT3XvIsFunaW6sIMg5KatRacSuoqvufM6Ec8Ay0r5QXQ3Z_PBtTf_bU7cyq2YdtTDQ8E1qKnBcqqvCocqHpukC1acNyY8OvQTA9GtOjMT0ac0ITPXdHz5KI_vUFosYiE39toVwv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637438295</pqid></control><display><type>article</type><title>Large Scale Network Embedding: A Separable Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Guojie ; Zhang, Liang ; Li, Ziyao ; Li, Yi</creator><creatorcontrib>Song, Guojie ; Zhang, Liang ; Li, Ziyao ; Li, Yi</creatorcontrib><description>Many successful methods have been proposed for learning low-dimensional representations on large-scale networks, while almost all existing methods are designed in inseparable processes, learning embeddings for entire networks even when only a small proportion of nodes are of interest. This leads to great inconvenience, especially on large-scale or dynamic networks, where these methods become almost impossible to implement. In this paper, we formalize the problem of separated matrix factorization, based on which we elaborate a novel objective function that preserves both local and global information. We compare our SMF framework with approximate SVD algorithms and demonstrate SMF can capture more information when factorizing a given matrix. We further propose SepNE, a simple and flexible network embedding algorithm which independently learns representations for different subsets of nodes in separated processes. By implementing separability, our algorithm reduces the redundant efforts to embed irrelevant nodes, yielding scalability to large networks. To further incorporate complex information into SepNE, we discuss several methods that can be used to leverage high-order proximities in large networks. We demonstrate the effectiveness of SepNE on several real-world networks with different scales and subjects. With comparable accuracy, our approach significantly outperforms state-of-the-art baselines in running times on large networks.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2020.3002700</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Complexity theory ; Embedding ; Inference algorithms ; Learning ; Linear programming ; Matrix decomposition ; matrix factorization ; Network embedding ; Networks ; Nodes ; Representations ; Scalability ; separability ; Task analysis</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-04, Vol.34 (4), p.1829-1842</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ca483c1724532dd426262e7fdaa5e062054717752a3ebf2700635c02607db5d3</citedby><cites>FETCH-LOGICAL-c293t-ca483c1724532dd426262e7fdaa5e062054717752a3ebf2700635c02607db5d3</cites><orcidid>0000-0001-8295-2520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9117196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9117196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Guojie</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Li, Ziyao</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><title>Large Scale Network Embedding: A Separable Approach</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Many successful methods have been proposed for learning low-dimensional representations on large-scale networks, while almost all existing methods are designed in inseparable processes, learning embeddings for entire networks even when only a small proportion of nodes are of interest. This leads to great inconvenience, especially on large-scale or dynamic networks, where these methods become almost impossible to implement. In this paper, we formalize the problem of separated matrix factorization, based on which we elaborate a novel objective function that preserves both local and global information. We compare our SMF framework with approximate SVD algorithms and demonstrate SMF can capture more information when factorizing a given matrix. We further propose SepNE, a simple and flexible network embedding algorithm which independently learns representations for different subsets of nodes in separated processes. By implementing separability, our algorithm reduces the redundant efforts to embed irrelevant nodes, yielding scalability to large networks. To further incorporate complex information into SepNE, we discuss several methods that can be used to leverage high-order proximities in large networks. We demonstrate the effectiveness of SepNE on several real-world networks with different scales and subjects. With comparable accuracy, our approach significantly outperforms state-of-the-art baselines in running times on large networks.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Complexity theory</subject><subject>Embedding</subject><subject>Inference algorithms</subject><subject>Learning</subject><subject>Linear programming</subject><subject>Matrix decomposition</subject><subject>matrix factorization</subject><subject>Network embedding</subject><subject>Networks</subject><subject>Nodes</subject><subject>Representations</subject><subject>Scalability</subject><subject>separability</subject><subject>Task analysis</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9AcZLE8_Fmf3ott4I4kds9AD3zXZ3iiDQuoUQ_73bQMwcZpJ533knD2O3CCNEKB7m70_TEQcOIwHANcAZG6BSecqxwPM4g8RUCqkv2VXXrQAg1zkOmChtWFAyc3ZNyQftDk34TqabirxfbhePyTiZUWuDreJ63Lahse7rml3Udt3RzakP2fx5Op-8puXny9tkXKaOF2KXOitz4VBzqQT3XvIsFunaW6sIMg5KatRacSuoqvufM6Ec8Ay0r5QXQ3Z_PBtTf_bU7cyq2YdtTDQ8E1qKnBcqqvCocqHpukC1acNyY8OvQTA9GtOjMT0ac0ITPXdHz5KI_vUFosYiE39toVwv</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Song, Guojie</creator><creator>Zhang, Liang</creator><creator>Li, Ziyao</creator><creator>Li, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8295-2520</orcidid></search><sort><creationdate>20220401</creationdate><title>Large Scale Network Embedding: A Separable Approach</title><author>Song, Guojie ; Zhang, Liang ; Li, Ziyao ; Li, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ca483c1724532dd426262e7fdaa5e062054717752a3ebf2700635c02607db5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Complexity theory</topic><topic>Embedding</topic><topic>Inference algorithms</topic><topic>Learning</topic><topic>Linear programming</topic><topic>Matrix decomposition</topic><topic>matrix factorization</topic><topic>Network embedding</topic><topic>Networks</topic><topic>Nodes</topic><topic>Representations</topic><topic>Scalability</topic><topic>separability</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Guojie</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Li, Ziyao</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Guojie</au><au>Zhang, Liang</au><au>Li, Ziyao</au><au>Li, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Scale Network Embedding: A Separable Approach</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>1829</spage><epage>1842</epage><pages>1829-1842</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Many successful methods have been proposed for learning low-dimensional representations on large-scale networks, while almost all existing methods are designed in inseparable processes, learning embeddings for entire networks even when only a small proportion of nodes are of interest. This leads to great inconvenience, especially on large-scale or dynamic networks, where these methods become almost impossible to implement. In this paper, we formalize the problem of separated matrix factorization, based on which we elaborate a novel objective function that preserves both local and global information. We compare our SMF framework with approximate SVD algorithms and demonstrate SMF can capture more information when factorizing a given matrix. We further propose SepNE, a simple and flexible network embedding algorithm which independently learns representations for different subsets of nodes in separated processes. By implementing separability, our algorithm reduces the redundant efforts to embed irrelevant nodes, yielding scalability to large networks. To further incorporate complex information into SepNE, we discuss several methods that can be used to leverage high-order proximities in large networks. We demonstrate the effectiveness of SepNE on several real-world networks with different scales and subjects. With comparable accuracy, our approach significantly outperforms state-of-the-art baselines in running times on large networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2020.3002700</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8295-2520</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2022-04, Vol.34 (4), p.1829-1842
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9117196
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Complexity theory
Embedding
Inference algorithms
Learning
Linear programming
Matrix decomposition
matrix factorization
Network embedding
Networks
Nodes
Representations
Scalability
separability
Task analysis
title Large Scale Network Embedding: A Separable Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Scale%20Network%20Embedding:%20A%20Separable%20Approach&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Song,%20Guojie&rft.date=2022-04-01&rft.volume=34&rft.issue=4&rft.spage=1829&rft.epage=1842&rft.pages=1829-1842&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2020.3002700&rft_dat=%3Cproquest_RIE%3E2637438295%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637438295&rft_id=info:pmid/&rft_ieee_id=9117196&rfr_iscdi=true