Efficient, Fair, and QoS-Aware Policies for Wirelessly Powered Communication Networks
In this paper, we propose efficient wireless power transfer (WPT) policies for various practical scenarios in wirelessly powered communication networks (WPCNs). First, we consider WPT from an energy access point (E-AP) to multiple energy receivers (E-Rs). We formulate the problem of maximizing the t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2020-09, Vol.68 (9), p.5892-5907 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5907 |
---|---|
container_issue | 9 |
container_start_page | 5892 |
container_title | IEEE transactions on communications |
container_volume | 68 |
creator | Rezaei, Roohollah Omidvar, Naeimeh Movahednasab, Mohammad Pakravan, Mohammad Reza Sun, Sumei Guan, Yong Liang |
description | In this paper, we propose efficient wireless power transfer (WPT) policies for various practical scenarios in wirelessly powered communication networks (WPCNs). First, we consider WPT from an energy access point (E-AP) to multiple energy receivers (E-Rs). We formulate the problem of maximizing the total average received power of the E-Rs subject to power constraints of the E-AP, which is a non-convex stochastic optimization problem. Using eigenvalue decomposition techniques, we derive a closed-form expression for the optimal policy, which requires the distribution of the channel state information (CSI) in the network. We then propose a near-optimal policy that does not require this knowledge and prove that its optimality gap can be decreased at the cost of increment in its convergence time. Next, we consider fairness among the E-Rs and propose a quality of service (QoS) aware fair policy that provides fairness and guarantees the required QoS of each E-R. Finally, we study a WPCN where the E-Rs utilize their received energy to transmit information to the E-AP. We maximize a generic fair network utility under the E-Rs' QoS constraints and the E-AP's power constraints. Numerical results show a significant improvement of O(log N) in the total throughput compared to the state-of-theart baselines. |
doi_str_mv | 10.1109/TCOMM.2020.3002584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9117100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9117100</ieee_id><sourcerecordid>2444609867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-cc978daab7dc119439d3259afbd65b9dfb6bff451a879d71609d3a77f2ecebec3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-Ab1p4i3D03Vb10uygJqAaIR42XT9SIqwYjtC-PcOIV6d5D3Pe07yIHRPYEgI8KdFNZ_NhimkMKQAaV5mF6hH8rxMoMzZJeoBcEgKxsprdBPjCgAyoLSHlmNrnXKmaQd4Il0YYNlo_OE_k9FeBoPf_fq4jtj6gL9cMGsT4_rQ5XsTjMaV32x2jVOydb7Bb6bd-_Adb9GVleto7s6zj5aT8aJ6Sabz59dqNE0UpbxNlOKs1FLWTCtCeEa5pmnOpa11kddc27qorc1yIkvGNSMFdIBkzKZGmdoo2kePp7vb4H92JrZi5Xeh6V6KNMuyji8L1lHpiVLBxxiMFdvgNjIcBAFx1Cf-9ImjPnHW15UeTiVnjPkvcEIYAaC_gzJsqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444609867</pqid></control><display><type>article</type><title>Efficient, Fair, and QoS-Aware Policies for Wirelessly Powered Communication Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Rezaei, Roohollah ; Omidvar, Naeimeh ; Movahednasab, Mohammad ; Pakravan, Mohammad Reza ; Sun, Sumei ; Guan, Yong Liang</creator><creatorcontrib>Rezaei, Roohollah ; Omidvar, Naeimeh ; Movahednasab, Mohammad ; Pakravan, Mohammad Reza ; Sun, Sumei ; Guan, Yong Liang</creatorcontrib><description>In this paper, we propose efficient wireless power transfer (WPT) policies for various practical scenarios in wirelessly powered communication networks (WPCNs). First, we consider WPT from an energy access point (E-AP) to multiple energy receivers (E-Rs). We formulate the problem of maximizing the total average received power of the E-Rs subject to power constraints of the E-AP, which is a non-convex stochastic optimization problem. Using eigenvalue decomposition techniques, we derive a closed-form expression for the optimal policy, which requires the distribution of the channel state information (CSI) in the network. We then propose a near-optimal policy that does not require this knowledge and prove that its optimality gap can be decreased at the cost of increment in its convergence time. Next, we consider fairness among the E-Rs and propose a quality of service (QoS) aware fair policy that provides fairness and guarantees the required QoS of each E-R. Finally, we study a WPCN where the E-Rs utilize their received energy to transmit information to the E-AP. We maximize a generic fair network utility under the E-Rs' QoS constraints and the E-AP's power constraints. Numerical results show a significant improvement of O(log N) in the total throughput compared to the state-of-theart baselines.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2020.3002584</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communication networks ; Communications networks ; dynamic power control ; Eigenvalues ; Energy utilization ; fairness ; long-term optimization ; min-drift-plus-penalty ; non-convex ; optimal policy ; Optimization ; Policies ; Quality of service ; Quality of service architectures ; stochastic optimization ; Stochastic processes ; sub-optimal policy ; Throughput ; Wireless communication ; Wireless power transfer ; Wireless power transmission ; Wireless sensor networks ; wirelessly powered communication networks</subject><ispartof>IEEE transactions on communications, 2020-09, Vol.68 (9), p.5892-5907</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-cc978daab7dc119439d3259afbd65b9dfb6bff451a879d71609d3a77f2ecebec3</citedby><cites>FETCH-LOGICAL-c339t-cc978daab7dc119439d3259afbd65b9dfb6bff451a879d71609d3a77f2ecebec3</cites><orcidid>0000-0002-9757-630X ; 0000-0002-0269-3088 ; 0000-0002-1701-8122 ; 0000-0002-2765-8422 ; 0000-0002-3899-8211 ; 0000-0002-4646-7381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9117100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9117100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rezaei, Roohollah</creatorcontrib><creatorcontrib>Omidvar, Naeimeh</creatorcontrib><creatorcontrib>Movahednasab, Mohammad</creatorcontrib><creatorcontrib>Pakravan, Mohammad Reza</creatorcontrib><creatorcontrib>Sun, Sumei</creatorcontrib><creatorcontrib>Guan, Yong Liang</creatorcontrib><title>Efficient, Fair, and QoS-Aware Policies for Wirelessly Powered Communication Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>In this paper, we propose efficient wireless power transfer (WPT) policies for various practical scenarios in wirelessly powered communication networks (WPCNs). First, we consider WPT from an energy access point (E-AP) to multiple energy receivers (E-Rs). We formulate the problem of maximizing the total average received power of the E-Rs subject to power constraints of the E-AP, which is a non-convex stochastic optimization problem. Using eigenvalue decomposition techniques, we derive a closed-form expression for the optimal policy, which requires the distribution of the channel state information (CSI) in the network. We then propose a near-optimal policy that does not require this knowledge and prove that its optimality gap can be decreased at the cost of increment in its convergence time. Next, we consider fairness among the E-Rs and propose a quality of service (QoS) aware fair policy that provides fairness and guarantees the required QoS of each E-R. Finally, we study a WPCN where the E-Rs utilize their received energy to transmit information to the E-AP. We maximize a generic fair network utility under the E-Rs' QoS constraints and the E-AP's power constraints. Numerical results show a significant improvement of O(log N) in the total throughput compared to the state-of-theart baselines.</description><subject>Communication networks</subject><subject>Communications networks</subject><subject>dynamic power control</subject><subject>Eigenvalues</subject><subject>Energy utilization</subject><subject>fairness</subject><subject>long-term optimization</subject><subject>min-drift-plus-penalty</subject><subject>non-convex</subject><subject>optimal policy</subject><subject>Optimization</subject><subject>Policies</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>stochastic optimization</subject><subject>Stochastic processes</subject><subject>sub-optimal policy</subject><subject>Throughput</subject><subject>Wireless communication</subject><subject>Wireless power transfer</subject><subject>Wireless power transmission</subject><subject>Wireless sensor networks</subject><subject>wirelessly powered communication networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiYj-Ab1p4i3D03Vb10uygJqAaIR42XT9SIqwYjtC-PcOIV6d5D3Pe07yIHRPYEgI8KdFNZ_NhimkMKQAaV5mF6hH8rxMoMzZJeoBcEgKxsprdBPjCgAyoLSHlmNrnXKmaQd4Il0YYNlo_OE_k9FeBoPf_fq4jtj6gL9cMGsT4_rQ5XsTjMaV32x2jVOydb7Bb6bd-_Adb9GVleto7s6zj5aT8aJ6Sabz59dqNE0UpbxNlOKs1FLWTCtCeEa5pmnOpa11kddc27qorc1yIkvGNSMFdIBkzKZGmdoo2kePp7vb4H92JrZi5Xeh6V6KNMuyji8L1lHpiVLBxxiMFdvgNjIcBAFx1Cf-9ImjPnHW15UeTiVnjPkvcEIYAaC_gzJsqQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Rezaei, Roohollah</creator><creator>Omidvar, Naeimeh</creator><creator>Movahednasab, Mohammad</creator><creator>Pakravan, Mohammad Reza</creator><creator>Sun, Sumei</creator><creator>Guan, Yong Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9757-630X</orcidid><orcidid>https://orcid.org/0000-0002-0269-3088</orcidid><orcidid>https://orcid.org/0000-0002-1701-8122</orcidid><orcidid>https://orcid.org/0000-0002-2765-8422</orcidid><orcidid>https://orcid.org/0000-0002-3899-8211</orcidid><orcidid>https://orcid.org/0000-0002-4646-7381</orcidid></search><sort><creationdate>20200901</creationdate><title>Efficient, Fair, and QoS-Aware Policies for Wirelessly Powered Communication Networks</title><author>Rezaei, Roohollah ; Omidvar, Naeimeh ; Movahednasab, Mohammad ; Pakravan, Mohammad Reza ; Sun, Sumei ; Guan, Yong Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-cc978daab7dc119439d3259afbd65b9dfb6bff451a879d71609d3a77f2ecebec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communication networks</topic><topic>Communications networks</topic><topic>dynamic power control</topic><topic>Eigenvalues</topic><topic>Energy utilization</topic><topic>fairness</topic><topic>long-term optimization</topic><topic>min-drift-plus-penalty</topic><topic>non-convex</topic><topic>optimal policy</topic><topic>Optimization</topic><topic>Policies</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>stochastic optimization</topic><topic>Stochastic processes</topic><topic>sub-optimal policy</topic><topic>Throughput</topic><topic>Wireless communication</topic><topic>Wireless power transfer</topic><topic>Wireless power transmission</topic><topic>Wireless sensor networks</topic><topic>wirelessly powered communication networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaei, Roohollah</creatorcontrib><creatorcontrib>Omidvar, Naeimeh</creatorcontrib><creatorcontrib>Movahednasab, Mohammad</creatorcontrib><creatorcontrib>Pakravan, Mohammad Reza</creatorcontrib><creatorcontrib>Sun, Sumei</creatorcontrib><creatorcontrib>Guan, Yong Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rezaei, Roohollah</au><au>Omidvar, Naeimeh</au><au>Movahednasab, Mohammad</au><au>Pakravan, Mohammad Reza</au><au>Sun, Sumei</au><au>Guan, Yong Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient, Fair, and QoS-Aware Policies for Wirelessly Powered Communication Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>68</volume><issue>9</issue><spage>5892</spage><epage>5907</epage><pages>5892-5907</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>In this paper, we propose efficient wireless power transfer (WPT) policies for various practical scenarios in wirelessly powered communication networks (WPCNs). First, we consider WPT from an energy access point (E-AP) to multiple energy receivers (E-Rs). We formulate the problem of maximizing the total average received power of the E-Rs subject to power constraints of the E-AP, which is a non-convex stochastic optimization problem. Using eigenvalue decomposition techniques, we derive a closed-form expression for the optimal policy, which requires the distribution of the channel state information (CSI) in the network. We then propose a near-optimal policy that does not require this knowledge and prove that its optimality gap can be decreased at the cost of increment in its convergence time. Next, we consider fairness among the E-Rs and propose a quality of service (QoS) aware fair policy that provides fairness and guarantees the required QoS of each E-R. Finally, we study a WPCN where the E-Rs utilize their received energy to transmit information to the E-AP. We maximize a generic fair network utility under the E-Rs' QoS constraints and the E-AP's power constraints. Numerical results show a significant improvement of O(log N) in the total throughput compared to the state-of-theart baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2020.3002584</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9757-630X</orcidid><orcidid>https://orcid.org/0000-0002-0269-3088</orcidid><orcidid>https://orcid.org/0000-0002-1701-8122</orcidid><orcidid>https://orcid.org/0000-0002-2765-8422</orcidid><orcidid>https://orcid.org/0000-0002-3899-8211</orcidid><orcidid>https://orcid.org/0000-0002-4646-7381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2020-09, Vol.68 (9), p.5892-5907 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_9117100 |
source | IEEE Electronic Library (IEL) |
subjects | Communication networks Communications networks dynamic power control Eigenvalues Energy utilization fairness long-term optimization min-drift-plus-penalty non-convex optimal policy Optimization Policies Quality of service Quality of service architectures stochastic optimization Stochastic processes sub-optimal policy Throughput Wireless communication Wireless power transfer Wireless power transmission Wireless sensor networks wirelessly powered communication networks |
title | Efficient, Fair, and QoS-Aware Policies for Wirelessly Powered Communication Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient,%20Fair,%20and%20QoS-Aware%20Policies%20for%20Wirelessly%20Powered%20Communication%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Rezaei,%20Roohollah&rft.date=2020-09-01&rft.volume=68&rft.issue=9&rft.spage=5892&rft.epage=5907&rft.pages=5892-5907&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2020.3002584&rft_dat=%3Cproquest_RIE%3E2444609867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444609867&rft_id=info:pmid/&rft_ieee_id=9117100&rfr_iscdi=true |