A novel technique for simulating space-time array data
In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 vol.1 |
---|---|
container_issue | |
container_start_page | 542 |
container_title | |
container_volume | 1 |
creator | Hatke, G.F. Yegulalp, A.F. |
description | In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algorithms, it has become crucial to simulate data which has a specified joint spatio-temporal correlation. In the case where only a finite number of time correlation lags are known (say, from measured data), then a technique for generating valid data having this specified correlation relationship is required. A direct extension of the current spatial techniques fails to insure proper temporal correlation for all time samples. Techniques have been proposed for generating space-time data from correlation functions defined for a finite number of lags, but the truncated correlation function must itself be positive definite (assuming a zero extension). In general, this will not be true for measured correlation data. This paper proposes two methods of generating arbitrarily long sequences of multi-channel Gaussian data which has a specified spatio-temporal correlation function. The first method uses a matrix finite impulse response (FIR) filter approach to generate data with the approximate spatio-temporal correlation required. The second method uses a matrix infinite impulse response (IIR) filter approach, and has the capability to generate data with the exact spatio-temporal correlation function specified to a finite number of time lags. Results are shown demonstrating simulated data having a spatio-temporal correlation function equal to that measured from a GPS adaptive array mounted on an F-16 illuminated with four strong broadband sources. |
doi_str_mv | 10.1109/ACSSC.2000.911014 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_911014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>911014</ieee_id><sourcerecordid>911014</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-1429164fb146287ab16ffd70a23f6a77e10c88bc441ab8bcdcb65e419b8ed4b73</originalsourceid><addsrcrecordid>eNotj8tqwzAUREUf0JD6A9qVfkDuvZIsyUtj-oJAF2nXQbKvWhXbSW2nkL-vIYWBAwNnYBi7Q8gRoXyo6u22ziUA5OVSoL5gK1lYI6QCdcmy0jpYokyB2l2xFULhhFGlumHZNH0vHuhCW1ArZio-7H-p4zM1X0P6ORKP-5FPqT92fk7DJ58OviExp564H0d_4q2f_S27jr6bKPvnmn08Pb7XL2Lz9vxaVxuR0MpZoJYlGh0DaiOd9QFNjK0FL1U03lpCaJwLjdbow8K2CaYgjWVw1Opg1Zrdn3cTEe0OY-r9eNqdT6s_ub1IIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel technique for simulating space-time array data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hatke, G.F. ; Yegulalp, A.F.</creator><creatorcontrib>Hatke, G.F. ; Yegulalp, A.F.</creatorcontrib><description>In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algorithms, it has become crucial to simulate data which has a specified joint spatio-temporal correlation. In the case where only a finite number of time correlation lags are known (say, from measured data), then a technique for generating valid data having this specified correlation relationship is required. A direct extension of the current spatial techniques fails to insure proper temporal correlation for all time samples. Techniques have been proposed for generating space-time data from correlation functions defined for a finite number of lags, but the truncated correlation function must itself be positive definite (assuming a zero extension). In general, this will not be true for measured correlation data. This paper proposes two methods of generating arbitrarily long sequences of multi-channel Gaussian data which has a specified spatio-temporal correlation function. The first method uses a matrix finite impulse response (FIR) filter approach to generate data with the approximate spatio-temporal correlation required. The second method uses a matrix infinite impulse response (IIR) filter approach, and has the capability to generate data with the exact spatio-temporal correlation function specified to a finite number of time lags. Results are shown demonstrating simulated data having a spatio-temporal correlation function equal to that measured from a GPS adaptive array mounted on an F-16 illuminated with four strong broadband sources.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780780365148</identifier><identifier>ISBN: 0780365143</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.2000.911014</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive arrays ; Array signal processing ; Autocorrelation ; Covariance matrix ; Finite impulse response filter ; Force sensors ; IIR filters ; Sensor arrays ; Spectral shape ; US Government</subject><ispartof>Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154), 2000, Vol.1, p.542-546 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/911014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/911014$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hatke, G.F.</creatorcontrib><creatorcontrib>Yegulalp, A.F.</creatorcontrib><title>A novel technique for simulating space-time array data</title><title>Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)</title><addtitle>ACSSC</addtitle><description>In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algorithms, it has become crucial to simulate data which has a specified joint spatio-temporal correlation. In the case where only a finite number of time correlation lags are known (say, from measured data), then a technique for generating valid data having this specified correlation relationship is required. A direct extension of the current spatial techniques fails to insure proper temporal correlation for all time samples. Techniques have been proposed for generating space-time data from correlation functions defined for a finite number of lags, but the truncated correlation function must itself be positive definite (assuming a zero extension). In general, this will not be true for measured correlation data. This paper proposes two methods of generating arbitrarily long sequences of multi-channel Gaussian data which has a specified spatio-temporal correlation function. The first method uses a matrix finite impulse response (FIR) filter approach to generate data with the approximate spatio-temporal correlation required. The second method uses a matrix infinite impulse response (IIR) filter approach, and has the capability to generate data with the exact spatio-temporal correlation function specified to a finite number of time lags. Results are shown demonstrating simulated data having a spatio-temporal correlation function equal to that measured from a GPS adaptive array mounted on an F-16 illuminated with four strong broadband sources.</description><subject>Adaptive arrays</subject><subject>Array signal processing</subject><subject>Autocorrelation</subject><subject>Covariance matrix</subject><subject>Finite impulse response filter</subject><subject>Force sensors</subject><subject>IIR filters</subject><subject>Sensor arrays</subject><subject>Spectral shape</subject><subject>US Government</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780780365148</isbn><isbn>0780365143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAUREUf0JD6A9qVfkDuvZIsyUtj-oJAF2nXQbKvWhXbSW2nkL-vIYWBAwNnYBi7Q8gRoXyo6u22ziUA5OVSoL5gK1lYI6QCdcmy0jpYokyB2l2xFULhhFGlumHZNH0vHuhCW1ArZio-7H-p4zM1X0P6ORKP-5FPqT92fk7DJ58OviExp564H0d_4q2f_S27jr6bKPvnmn08Pb7XL2Lz9vxaVxuR0MpZoJYlGh0DaiOd9QFNjK0FL1U03lpCaJwLjdbow8K2CaYgjWVw1Opg1Zrdn3cTEe0OY-r9eNqdT6s_ub1IIw</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Hatke, G.F.</creator><creator>Yegulalp, A.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>A novel technique for simulating space-time array data</title><author>Hatke, G.F. ; Yegulalp, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-1429164fb146287ab16ffd70a23f6a77e10c88bc441ab8bcdcb65e419b8ed4b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive arrays</topic><topic>Array signal processing</topic><topic>Autocorrelation</topic><topic>Covariance matrix</topic><topic>Finite impulse response filter</topic><topic>Force sensors</topic><topic>IIR filters</topic><topic>Sensor arrays</topic><topic>Spectral shape</topic><topic>US Government</topic><toplevel>online_resources</toplevel><creatorcontrib>Hatke, G.F.</creatorcontrib><creatorcontrib>Yegulalp, A.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hatke, G.F.</au><au>Yegulalp, A.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel technique for simulating space-time array data</atitle><btitle>Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)</btitle><stitle>ACSSC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>542</spage><epage>546 vol.1</epage><pages>542-546 vol.1</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780780365148</isbn><isbn>0780365143</isbn><abstract>In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algorithms, it has become crucial to simulate data which has a specified joint spatio-temporal correlation. In the case where only a finite number of time correlation lags are known (say, from measured data), then a technique for generating valid data having this specified correlation relationship is required. A direct extension of the current spatial techniques fails to insure proper temporal correlation for all time samples. Techniques have been proposed for generating space-time data from correlation functions defined for a finite number of lags, but the truncated correlation function must itself be positive definite (assuming a zero extension). In general, this will not be true for measured correlation data. This paper proposes two methods of generating arbitrarily long sequences of multi-channel Gaussian data which has a specified spatio-temporal correlation function. The first method uses a matrix finite impulse response (FIR) filter approach to generate data with the approximate spatio-temporal correlation required. The second method uses a matrix infinite impulse response (IIR) filter approach, and has the capability to generate data with the exact spatio-temporal correlation function specified to a finite number of time lags. Results are shown demonstrating simulated data having a spatio-temporal correlation function equal to that measured from a GPS adaptive array mounted on an F-16 illuminated with four strong broadband sources.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2000.911014</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154), 2000, Vol.1, p.542-546 vol.1 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_911014 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive arrays Array signal processing Autocorrelation Covariance matrix Finite impulse response filter Force sensors IIR filters Sensor arrays Spectral shape US Government |
title | A novel technique for simulating space-time array data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20technique%20for%20simulating%20space-time%20array%20data&rft.btitle=Conference%20Record%20of%20the%20Thirty-Fourth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(Cat.%20No.00CH37154)&rft.au=Hatke,%20G.F.&rft.date=2000&rft.volume=1&rft.spage=542&rft.epage=546%20vol.1&rft.pages=542-546%20vol.1&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780780365148&rft.isbn_list=0780365143&rft_id=info:doi/10.1109/ACSSC.2000.911014&rft_dat=%3Cieee_6IE%3E911014%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=911014&rfr_iscdi=true |