A novel technique for simulating space-time array data

In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hatke, G.F., Yegulalp, A.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546 vol.1
container_issue
container_start_page 542
container_title
container_volume 1
creator Hatke, G.F.
Yegulalp, A.F.
description In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algorithms, it has become crucial to simulate data which has a specified joint spatio-temporal correlation. In the case where only a finite number of time correlation lags are known (say, from measured data), then a technique for generating valid data having this specified correlation relationship is required. A direct extension of the current spatial techniques fails to insure proper temporal correlation for all time samples. Techniques have been proposed for generating space-time data from correlation functions defined for a finite number of lags, but the truncated correlation function must itself be positive definite (assuming a zero extension). In general, this will not be true for measured correlation data. This paper proposes two methods of generating arbitrarily long sequences of multi-channel Gaussian data which has a specified spatio-temporal correlation function. The first method uses a matrix finite impulse response (FIR) filter approach to generate data with the approximate spatio-temporal correlation required. The second method uses a matrix infinite impulse response (IIR) filter approach, and has the capability to generate data with the exact spatio-temporal correlation function specified to a finite number of time lags. Results are shown demonstrating simulated data having a spatio-temporal correlation function equal to that measured from a GPS adaptive array mounted on an F-16 illuminated with four strong broadband sources.
doi_str_mv 10.1109/ACSSC.2000.911014
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_911014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>911014</ieee_id><sourcerecordid>911014</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-1429164fb146287ab16ffd70a23f6a77e10c88bc441ab8bcdcb65e419b8ed4b73</originalsourceid><addsrcrecordid>eNotj8tqwzAUREUf0JD6A9qVfkDuvZIsyUtj-oJAF2nXQbKvWhXbSW2nkL-vIYWBAwNnYBi7Q8gRoXyo6u22ziUA5OVSoL5gK1lYI6QCdcmy0jpYokyB2l2xFULhhFGlumHZNH0vHuhCW1ArZio-7H-p4zM1X0P6ORKP-5FPqT92fk7DJ58OviExp564H0d_4q2f_S27jr6bKPvnmn08Pb7XL2Lz9vxaVxuR0MpZoJYlGh0DaiOd9QFNjK0FL1U03lpCaJwLjdbow8K2CaYgjWVw1Opg1Zrdn3cTEe0OY-r9eNqdT6s_ub1IIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel technique for simulating space-time array data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hatke, G.F. ; Yegulalp, A.F.</creator><creatorcontrib>Hatke, G.F. ; Yegulalp, A.F.</creatorcontrib><description>In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algorithms, it has become crucial to simulate data which has a specified joint spatio-temporal correlation. In the case where only a finite number of time correlation lags are known (say, from measured data), then a technique for generating valid data having this specified correlation relationship is required. A direct extension of the current spatial techniques fails to insure proper temporal correlation for all time samples. Techniques have been proposed for generating space-time data from correlation functions defined for a finite number of lags, but the truncated correlation function must itself be positive definite (assuming a zero extension). In general, this will not be true for measured correlation data. This paper proposes two methods of generating arbitrarily long sequences of multi-channel Gaussian data which has a specified spatio-temporal correlation function. The first method uses a matrix finite impulse response (FIR) filter approach to generate data with the approximate spatio-temporal correlation required. The second method uses a matrix infinite impulse response (IIR) filter approach, and has the capability to generate data with the exact spatio-temporal correlation function specified to a finite number of time lags. Results are shown demonstrating simulated data having a spatio-temporal correlation function equal to that measured from a GPS adaptive array mounted on an F-16 illuminated with four strong broadband sources.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780780365148</identifier><identifier>ISBN: 0780365143</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.2000.911014</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive arrays ; Array signal processing ; Autocorrelation ; Covariance matrix ; Finite impulse response filter ; Force sensors ; IIR filters ; Sensor arrays ; Spectral shape ; US Government</subject><ispartof>Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154), 2000, Vol.1, p.542-546 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/911014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/911014$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hatke, G.F.</creatorcontrib><creatorcontrib>Yegulalp, A.F.</creatorcontrib><title>A novel technique for simulating space-time array data</title><title>Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)</title><addtitle>ACSSC</addtitle><description>In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algorithms, it has become crucial to simulate data which has a specified joint spatio-temporal correlation. In the case where only a finite number of time correlation lags are known (say, from measured data), then a technique for generating valid data having this specified correlation relationship is required. A direct extension of the current spatial techniques fails to insure proper temporal correlation for all time samples. Techniques have been proposed for generating space-time data from correlation functions defined for a finite number of lags, but the truncated correlation function must itself be positive definite (assuming a zero extension). In general, this will not be true for measured correlation data. This paper proposes two methods of generating arbitrarily long sequences of multi-channel Gaussian data which has a specified spatio-temporal correlation function. The first method uses a matrix finite impulse response (FIR) filter approach to generate data with the approximate spatio-temporal correlation required. The second method uses a matrix infinite impulse response (IIR) filter approach, and has the capability to generate data with the exact spatio-temporal correlation function specified to a finite number of time lags. Results are shown demonstrating simulated data having a spatio-temporal correlation function equal to that measured from a GPS adaptive array mounted on an F-16 illuminated with four strong broadband sources.</description><subject>Adaptive arrays</subject><subject>Array signal processing</subject><subject>Autocorrelation</subject><subject>Covariance matrix</subject><subject>Finite impulse response filter</subject><subject>Force sensors</subject><subject>IIR filters</subject><subject>Sensor arrays</subject><subject>Spectral shape</subject><subject>US Government</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780780365148</isbn><isbn>0780365143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAUREUf0JD6A9qVfkDuvZIsyUtj-oJAF2nXQbKvWhXbSW2nkL-vIYWBAwNnYBi7Q8gRoXyo6u22ziUA5OVSoL5gK1lYI6QCdcmy0jpYokyB2l2xFULhhFGlumHZNH0vHuhCW1ArZio-7H-p4zM1X0P6ORKP-5FPqT92fk7DJ58OviExp564H0d_4q2f_S27jr6bKPvnmn08Pb7XL2Lz9vxaVxuR0MpZoJYlGh0DaiOd9QFNjK0FL1U03lpCaJwLjdbow8K2CaYgjWVw1Opg1Zrdn3cTEe0OY-r9eNqdT6s_ub1IIw</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Hatke, G.F.</creator><creator>Yegulalp, A.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>A novel technique for simulating space-time array data</title><author>Hatke, G.F. ; Yegulalp, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-1429164fb146287ab16ffd70a23f6a77e10c88bc441ab8bcdcb65e419b8ed4b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive arrays</topic><topic>Array signal processing</topic><topic>Autocorrelation</topic><topic>Covariance matrix</topic><topic>Finite impulse response filter</topic><topic>Force sensors</topic><topic>IIR filters</topic><topic>Sensor arrays</topic><topic>Spectral shape</topic><topic>US Government</topic><toplevel>online_resources</toplevel><creatorcontrib>Hatke, G.F.</creatorcontrib><creatorcontrib>Yegulalp, A.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hatke, G.F.</au><au>Yegulalp, A.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel technique for simulating space-time array data</atitle><btitle>Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)</btitle><stitle>ACSSC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>542</spage><epage>546 vol.1</epage><pages>542-546 vol.1</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780780365148</isbn><isbn>0780365143</isbn><abstract>In the development of adaptive array processing algorithms, data simulation has been a key element of testing and evaluation. It has long been known how to simulate temporally-white, Gaussian array data with a specified spatial covariance. However, with the advent of space-time array processing algorithms, it has become crucial to simulate data which has a specified joint spatio-temporal correlation. In the case where only a finite number of time correlation lags are known (say, from measured data), then a technique for generating valid data having this specified correlation relationship is required. A direct extension of the current spatial techniques fails to insure proper temporal correlation for all time samples. Techniques have been proposed for generating space-time data from correlation functions defined for a finite number of lags, but the truncated correlation function must itself be positive definite (assuming a zero extension). In general, this will not be true for measured correlation data. This paper proposes two methods of generating arbitrarily long sequences of multi-channel Gaussian data which has a specified spatio-temporal correlation function. The first method uses a matrix finite impulse response (FIR) filter approach to generate data with the approximate spatio-temporal correlation required. The second method uses a matrix infinite impulse response (IIR) filter approach, and has the capability to generate data with the exact spatio-temporal correlation function specified to a finite number of time lags. Results are shown demonstrating simulated data having a spatio-temporal correlation function equal to that measured from a GPS adaptive array mounted on an F-16 illuminated with four strong broadband sources.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2000.911014</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154), 2000, Vol.1, p.542-546 vol.1
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_911014
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive arrays
Array signal processing
Autocorrelation
Covariance matrix
Finite impulse response filter
Force sensors
IIR filters
Sensor arrays
Spectral shape
US Government
title A novel technique for simulating space-time array data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20technique%20for%20simulating%20space-time%20array%20data&rft.btitle=Conference%20Record%20of%20the%20Thirty-Fourth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(Cat.%20No.00CH37154)&rft.au=Hatke,%20G.F.&rft.date=2000&rft.volume=1&rft.spage=542&rft.epage=546%20vol.1&rft.pages=542-546%20vol.1&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780780365148&rft.isbn_list=0780365143&rft_id=info:doi/10.1109/ACSSC.2000.911014&rft_dat=%3Cieee_6IE%3E911014%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=911014&rfr_iscdi=true