40Gb/s Secure Optical Communication Based on Symbol-by-Symbol Optical Phase Encryption

Achieving high speed physical layer security is a constant pursuit but critical challenge for the information society. In this paper, a novel symbol-by-symbol optical phase encryption technique relying on ultra-long, reconfigurable optical phase patterns and commercial off-the-shelf dispersive compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2020-07, Vol.32 (14), p.851-854
Hauptverfasser: Gao, Zhensen, An, Yuehua, Wang, Anbang, Li, Pu, Qin, Yuwen, Wang, Yuncai, Wang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 14
container_start_page 851
container_title IEEE photonics technology letters
container_volume 32
creator Gao, Zhensen
An, Yuehua
Wang, Anbang
Li, Pu
Qin, Yuwen
Wang, Yuncai
Wang, Xu
description Achieving high speed physical layer security is a constant pursuit but critical challenge for the information society. In this paper, a novel symbol-by-symbol optical phase encryption technique relying on ultra-long, reconfigurable optical phase patterns and commercial off-the-shelf dispersive components is proposed for high speed physical layer security. A record 40Gb/s secure optical communication system with symbol overlapped, optical phase encrypted differential-phase-shift-keying modulated signal is experimentally demonstrated based on the proposed technique. Security robustness against various eavesdropper's attacks has been validated for three optical codes with a chip rate of 40Gchip/s and variable code-length of 128-chip, 512-chip and 1024-chip, respectively. The demonstrated technique exhibits the advantages of supporting high bit rate operation and advanced optical modulation formats, improving code flexibility and cardinality, which makes it very promising for future ultra-fast secure optical communication.
doi_str_mv 10.1109/LPT.2020.3000215
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9109338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9109338</ieee_id><sourcerecordid>2414532835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d04899c5f81fe1fbb25f5f2f87ec8419202ad385800d79d7baed53f8df93a67e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA57Qz-2F2j1q0CoUWWr0u-djFlObD3eSQf--GlJ7mOTzvDPMS8oiwQAS13OwOCwoUFgwAKIorMkPFMQZM-HVgCIzIxC258_4IgFwwPiM_HNbZ0kd7k_fORNu2K_P0FK2aqurrgF3Z1NFb6k0RBdgPVdac4myIJ7r4u9-gRO917oZ2jNyTG5uevHk4zzn5_ng_rD7jzXb9tXrdxDlV2MUFcKlULqxEa9BmGRVWWGplYnLJUYWH0oJJIQGKRBVJlppCMCsLq1j6khg2J8_T3tY1f73xnT42vavDSU35-CKVTAQLJit3jffOWN26skrdoBH02J4O7emxPX1uL0SepkhpjLnoKriMSfYPMuhqZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414532835</pqid></control><display><type>article</type><title>40Gb/s Secure Optical Communication Based on Symbol-by-Symbol Optical Phase Encryption</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Zhensen ; An, Yuehua ; Wang, Anbang ; Li, Pu ; Qin, Yuwen ; Wang, Yuncai ; Wang, Xu</creator><creatorcontrib>Gao, Zhensen ; An, Yuehua ; Wang, Anbang ; Li, Pu ; Qin, Yuwen ; Wang, Yuncai ; Wang, Xu</creatorcontrib><description>Achieving high speed physical layer security is a constant pursuit but critical challenge for the information society. In this paper, a novel symbol-by-symbol optical phase encryption technique relying on ultra-long, reconfigurable optical phase patterns and commercial off-the-shelf dispersive components is proposed for high speed physical layer security. A record 40Gb/s secure optical communication system with symbol overlapped, optical phase encrypted differential-phase-shift-keying modulated signal is experimentally demonstrated based on the proposed technique. Security robustness against various eavesdropper's attacks has been validated for three optical codes with a chip rate of 40Gchip/s and variable code-length of 128-chip, 512-chip and 1024-chip, respectively. The demonstrated technique exhibits the advantages of supporting high bit rate operation and advanced optical modulation formats, improving code flexibility and cardinality, which makes it very promising for future ultra-fast secure optical communication.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2020.3000215</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Commercial off-the-shelf technology ; Communication ; communication system security ; Communications systems ; Differential phase shift keying ; Encryption ; High speed ; High-speed optical techniques ; Optical communication ; optical encryption ; Optical modulation ; Optical pulses ; Optical receivers ; Optical signal processing ; Phase shift keying ; Secure optical communication</subject><ispartof>IEEE photonics technology letters, 2020-07, Vol.32 (14), p.851-854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d04899c5f81fe1fbb25f5f2f87ec8419202ad385800d79d7baed53f8df93a67e3</citedby><cites>FETCH-LOGICAL-c291t-d04899c5f81fe1fbb25f5f2f87ec8419202ad385800d79d7baed53f8df93a67e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9109338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9109338$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Zhensen</creatorcontrib><creatorcontrib>An, Yuehua</creatorcontrib><creatorcontrib>Wang, Anbang</creatorcontrib><creatorcontrib>Li, Pu</creatorcontrib><creatorcontrib>Qin, Yuwen</creatorcontrib><creatorcontrib>Wang, Yuncai</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><title>40Gb/s Secure Optical Communication Based on Symbol-by-Symbol Optical Phase Encryption</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>Achieving high speed physical layer security is a constant pursuit but critical challenge for the information society. In this paper, a novel symbol-by-symbol optical phase encryption technique relying on ultra-long, reconfigurable optical phase patterns and commercial off-the-shelf dispersive components is proposed for high speed physical layer security. A record 40Gb/s secure optical communication system with symbol overlapped, optical phase encrypted differential-phase-shift-keying modulated signal is experimentally demonstrated based on the proposed technique. Security robustness against various eavesdropper's attacks has been validated for three optical codes with a chip rate of 40Gchip/s and variable code-length of 128-chip, 512-chip and 1024-chip, respectively. The demonstrated technique exhibits the advantages of supporting high bit rate operation and advanced optical modulation formats, improving code flexibility and cardinality, which makes it very promising for future ultra-fast secure optical communication.</description><subject>Commercial off-the-shelf technology</subject><subject>Communication</subject><subject>communication system security</subject><subject>Communications systems</subject><subject>Differential phase shift keying</subject><subject>Encryption</subject><subject>High speed</subject><subject>High-speed optical techniques</subject><subject>Optical communication</subject><subject>optical encryption</subject><subject>Optical modulation</subject><subject>Optical pulses</subject><subject>Optical receivers</subject><subject>Optical signal processing</subject><subject>Phase shift keying</subject><subject>Secure optical communication</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA57Qz-2F2j1q0CoUWWr0u-djFlObD3eSQf--GlJ7mOTzvDPMS8oiwQAS13OwOCwoUFgwAKIorMkPFMQZM-HVgCIzIxC258_4IgFwwPiM_HNbZ0kd7k_fORNu2K_P0FK2aqurrgF3Z1NFb6k0RBdgPVdac4myIJ7r4u9-gRO917oZ2jNyTG5uevHk4zzn5_ng_rD7jzXb9tXrdxDlV2MUFcKlULqxEa9BmGRVWWGplYnLJUYWH0oJJIQGKRBVJlppCMCsLq1j6khg2J8_T3tY1f73xnT42vavDSU35-CKVTAQLJit3jffOWN26skrdoBH02J4O7emxPX1uL0SepkhpjLnoKriMSfYPMuhqZw</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Gao, Zhensen</creator><creator>An, Yuehua</creator><creator>Wang, Anbang</creator><creator>Li, Pu</creator><creator>Qin, Yuwen</creator><creator>Wang, Yuncai</creator><creator>Wang, Xu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200715</creationdate><title>40Gb/s Secure Optical Communication Based on Symbol-by-Symbol Optical Phase Encryption</title><author>Gao, Zhensen ; An, Yuehua ; Wang, Anbang ; Li, Pu ; Qin, Yuwen ; Wang, Yuncai ; Wang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d04899c5f81fe1fbb25f5f2f87ec8419202ad385800d79d7baed53f8df93a67e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Commercial off-the-shelf technology</topic><topic>Communication</topic><topic>communication system security</topic><topic>Communications systems</topic><topic>Differential phase shift keying</topic><topic>Encryption</topic><topic>High speed</topic><topic>High-speed optical techniques</topic><topic>Optical communication</topic><topic>optical encryption</topic><topic>Optical modulation</topic><topic>Optical pulses</topic><topic>Optical receivers</topic><topic>Optical signal processing</topic><topic>Phase shift keying</topic><topic>Secure optical communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Zhensen</creatorcontrib><creatorcontrib>An, Yuehua</creatorcontrib><creatorcontrib>Wang, Anbang</creatorcontrib><creatorcontrib>Li, Pu</creatorcontrib><creatorcontrib>Qin, Yuwen</creatorcontrib><creatorcontrib>Wang, Yuncai</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Zhensen</au><au>An, Yuehua</au><au>Wang, Anbang</au><au>Li, Pu</au><au>Qin, Yuwen</au><au>Wang, Yuncai</au><au>Wang, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>40Gb/s Secure Optical Communication Based on Symbol-by-Symbol Optical Phase Encryption</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2020-07-15</date><risdate>2020</risdate><volume>32</volume><issue>14</issue><spage>851</spage><epage>854</epage><pages>851-854</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>Achieving high speed physical layer security is a constant pursuit but critical challenge for the information society. In this paper, a novel symbol-by-symbol optical phase encryption technique relying on ultra-long, reconfigurable optical phase patterns and commercial off-the-shelf dispersive components is proposed for high speed physical layer security. A record 40Gb/s secure optical communication system with symbol overlapped, optical phase encrypted differential-phase-shift-keying modulated signal is experimentally demonstrated based on the proposed technique. Security robustness against various eavesdropper's attacks has been validated for three optical codes with a chip rate of 40Gchip/s and variable code-length of 128-chip, 512-chip and 1024-chip, respectively. The demonstrated technique exhibits the advantages of supporting high bit rate operation and advanced optical modulation formats, improving code flexibility and cardinality, which makes it very promising for future ultra-fast secure optical communication.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2020.3000215</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2020-07, Vol.32 (14), p.851-854
issn 1041-1135
1941-0174
language eng
recordid cdi_ieee_primary_9109338
source IEEE Electronic Library (IEL)
subjects Commercial off-the-shelf technology
Communication
communication system security
Communications systems
Differential phase shift keying
Encryption
High speed
High-speed optical techniques
Optical communication
optical encryption
Optical modulation
Optical pulses
Optical receivers
Optical signal processing
Phase shift keying
Secure optical communication
title 40Gb/s Secure Optical Communication Based on Symbol-by-Symbol Optical Phase Encryption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=40Gb/s%20Secure%20Optical%20Communication%20Based%20on%20Symbol-by-Symbol%20Optical%20Phase%20Encryption&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Gao,%20Zhensen&rft.date=2020-07-15&rft.volume=32&rft.issue=14&rft.spage=851&rft.epage=854&rft.pages=851-854&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2020.3000215&rft_dat=%3Cproquest_RIE%3E2414532835%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414532835&rft_id=info:pmid/&rft_ieee_id=9109338&rfr_iscdi=true