Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems

This paper considers the problem of downlink (DL) training sequence design with limited coherence time for frequency division duplex (FDD) massive MIMO systems in a general scenario of single-stage precoding and distinct spatial correlations between users. To this end, a computationally feasible sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.108731-108747
Hauptverfasser: Alsabah, Muntadher Qasim, Vehkapera, Mikko, O'Farrell, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108747
container_issue
container_start_page 108731
container_title IEEE access
container_volume 8
creator Alsabah, Muntadher Qasim
Vehkapera, Mikko
O'Farrell, Timothy
description This paper considers the problem of downlink (DL) training sequence design with limited coherence time for frequency division duplex (FDD) massive MIMO systems in a general scenario of single-stage precoding and distinct spatial correlations between users. To this end, a computationally feasible solution for designing the DL training sequences is proposed using the principle of linear superposition of sequences constructed from the users' channel covariance matrices. Based on the non-iterative superposition training structure and the P -degrees of freedom ( P -DoF) channel model, a novel closed-form solution for the optimum training sequence length that maximizes the DL achievable sum rate is provided for the eigenbeamforming (BF) precoder. Additionally, a simplified analysis that characterizes the sum rate performance of the BF and regularized zero forcing (RZF) precoders in closed-form is developed based on the method of random matrix theory and the P -DoF channel model. The results show that the superposition training sequences achieve almost the same rate performances as state-of-the-art training sequence designs. The analysis of the complexity results demonstrates that more than four orders-of-magnitude reduction in the computational complexity is achieved using the superposition training design, which signifies the feasibility of this approach for practical implementations compared with state-of-the-art iterative algorithms for DL training designs. Importantly, the results indicate that the analytical solution for the optimum training sequence length with the P -DoF channel model can be effectively used with high accuracy to predict the sum rate performance in the more realistic one ring (OR) channel model, and thus, near optimal solutions can be readily obtained without resorting to computationally intensive optimization techniques.
doi_str_mv 10.1109/ACCESS.2020.3000302
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9109330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9109330</ieee_id><doaj_id>oai_doaj_org_article_f928947e3e434b2db549f07d238ea6c9</doaj_id><sourcerecordid>2454444549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-eae93cd39d8f89966cafebd97e975c6fce88d76753482b9c422f001ab544ff7e3</originalsourceid><addsrcrecordid>eNpNkV1PwyAYhRujiYv6C7wh8bqTAm3hcm5TlzhNrF4TRl8W5gYTOr9-vcwa4w2QwznPSzhZdl7gYVFgcTkaj6dNMySY4CHFGFNMDrIBKSqR05JWh__Ox9lZjKvkwTxJZT3IVvfe5bMOgursG6CJf3dr617QU1DWWbdEDbzuwOl0BdEuHbpSEVrkHWp2G_SoOkBz9WE39isBkmodup5MkhbjnjefzR9Q8xk72MTT7MiodYSz3_0ke76ePo1v87uHm9l4dJdrhnmXgwJBdUtFyw0Xoqq0MrBoRQ2iLnVlNHDe1lVdUsbJQmhGiMG4UIuSMWNqoCfZrOe2Xq3kNtiNCp_SKyt_BB-WUoXO6jVIIwgXLGWAUbYgbWIIg-uWUA6q0iKxLnrWNvj0D7GTK78LLj1fEpYGsrTsXbR36eBjDGD-phZY7juSfUdy35H87SilzvuUBYC_hEh2SjH9Bk-WjIM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454444549</pqid></control><display><type>article</type><title>Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alsabah, Muntadher Qasim ; Vehkapera, Mikko ; O'Farrell, Timothy</creator><creatorcontrib>Alsabah, Muntadher Qasim ; Vehkapera, Mikko ; O'Farrell, Timothy</creatorcontrib><description><![CDATA[This paper considers the problem of downlink (DL) training sequence design with limited coherence time for frequency division duplex (FDD) massive MIMO systems in a general scenario of single-stage precoding and distinct spatial correlations between users. To this end, a computationally feasible solution for designing the DL training sequences is proposed using the principle of linear superposition of sequences constructed from the users' channel covariance matrices. Based on the non-iterative superposition training structure and the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-degrees of freedom (<inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF) channel model, a novel closed-form solution for the optimum training sequence length that maximizes the DL achievable sum rate is provided for the eigenbeamforming (BF) precoder. Additionally, a simplified analysis that characterizes the sum rate performance of the BF and regularized zero forcing (RZF) precoders in closed-form is developed based on the method of random matrix theory and the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF channel model. The results show that the superposition training sequences achieve almost the same rate performances as state-of-the-art training sequence designs. The analysis of the complexity results demonstrates that more than four orders-of-magnitude reduction in the computational complexity is achieved using the superposition training design, which signifies the feasibility of this approach for practical implementations compared with state-of-the-art iterative algorithms for DL training designs. Importantly, the results indicate that the analytical solution for the optimum training sequence length with the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF channel model can be effectively used with high accuracy to predict the sum rate performance in the more realistic one ring (OR) channel model, and thus, near optimal solutions can be readily obtained without resorting to computationally intensive optimization techniques.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3000302</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>achievable sum rate ; Channel estimation ; Channel models ; Closed form solutions ; Coherence time ; Complexity ; Correlation ; Covariance matrix ; Degrees of freedom ; Design ; Downlinking ; Exact solutions ; Feasibility ; frequency division duplex ; Frequency division duplexing ; Iterative algorithms ; Iterative methods ; Massive MIMO ; Matrix methods ; Matrix theory ; MIMO (control systems) ; Optimization ; Optimization techniques ; Precoding ; random matrix theory ; spatial channel correlation ; time division duplex ; Training ; training sequence design</subject><ispartof>IEEE access, 2020, Vol.8, p.108731-108747</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-eae93cd39d8f89966cafebd97e975c6fce88d76753482b9c422f001ab544ff7e3</citedby><cites>FETCH-LOGICAL-c408t-eae93cd39d8f89966cafebd97e975c6fce88d76753482b9c422f001ab544ff7e3</cites><orcidid>0000-0001-7937-3093 ; 0000-0002-7870-4097 ; 0000-0002-3085-538X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9109330$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Alsabah, Muntadher Qasim</creatorcontrib><creatorcontrib>Vehkapera, Mikko</creatorcontrib><creatorcontrib>O'Farrell, Timothy</creatorcontrib><title>Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[This paper considers the problem of downlink (DL) training sequence design with limited coherence time for frequency division duplex (FDD) massive MIMO systems in a general scenario of single-stage precoding and distinct spatial correlations between users. To this end, a computationally feasible solution for designing the DL training sequences is proposed using the principle of linear superposition of sequences constructed from the users' channel covariance matrices. Based on the non-iterative superposition training structure and the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-degrees of freedom (<inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF) channel model, a novel closed-form solution for the optimum training sequence length that maximizes the DL achievable sum rate is provided for the eigenbeamforming (BF) precoder. Additionally, a simplified analysis that characterizes the sum rate performance of the BF and regularized zero forcing (RZF) precoders in closed-form is developed based on the method of random matrix theory and the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF channel model. The results show that the superposition training sequences achieve almost the same rate performances as state-of-the-art training sequence designs. The analysis of the complexity results demonstrates that more than four orders-of-magnitude reduction in the computational complexity is achieved using the superposition training design, which signifies the feasibility of this approach for practical implementations compared with state-of-the-art iterative algorithms for DL training designs. Importantly, the results indicate that the analytical solution for the optimum training sequence length with the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF channel model can be effectively used with high accuracy to predict the sum rate performance in the more realistic one ring (OR) channel model, and thus, near optimal solutions can be readily obtained without resorting to computationally intensive optimization techniques.]]></description><subject>achievable sum rate</subject><subject>Channel estimation</subject><subject>Channel models</subject><subject>Closed form solutions</subject><subject>Coherence time</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Covariance matrix</subject><subject>Degrees of freedom</subject><subject>Design</subject><subject>Downlinking</subject><subject>Exact solutions</subject><subject>Feasibility</subject><subject>frequency division duplex</subject><subject>Frequency division duplexing</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Massive MIMO</subject><subject>Matrix methods</subject><subject>Matrix theory</subject><subject>MIMO (control systems)</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Precoding</subject><subject>random matrix theory</subject><subject>spatial channel correlation</subject><subject>time division duplex</subject><subject>Training</subject><subject>training sequence design</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1PwyAYhRujiYv6C7wh8bqTAm3hcm5TlzhNrF4TRl8W5gYTOr9-vcwa4w2QwznPSzhZdl7gYVFgcTkaj6dNMySY4CHFGFNMDrIBKSqR05JWh__Ox9lZjKvkwTxJZT3IVvfe5bMOgursG6CJf3dr617QU1DWWbdEDbzuwOl0BdEuHbpSEVrkHWp2G_SoOkBz9WE39isBkmodup5MkhbjnjefzR9Q8xk72MTT7MiodYSz3_0ke76ePo1v87uHm9l4dJdrhnmXgwJBdUtFyw0Xoqq0MrBoRQ2iLnVlNHDe1lVdUsbJQmhGiMG4UIuSMWNqoCfZrOe2Xq3kNtiNCp_SKyt_BB-WUoXO6jVIIwgXLGWAUbYgbWIIg-uWUA6q0iKxLnrWNvj0D7GTK78LLj1fEpYGsrTsXbR36eBjDGD-phZY7juSfUdy35H87SilzvuUBYC_hEh2SjH9Bk-WjIM</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Alsabah, Muntadher Qasim</creator><creator>Vehkapera, Mikko</creator><creator>O'Farrell, Timothy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7937-3093</orcidid><orcidid>https://orcid.org/0000-0002-7870-4097</orcidid><orcidid>https://orcid.org/0000-0002-3085-538X</orcidid></search><sort><creationdate>2020</creationdate><title>Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems</title><author>Alsabah, Muntadher Qasim ; Vehkapera, Mikko ; O'Farrell, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-eae93cd39d8f89966cafebd97e975c6fce88d76753482b9c422f001ab544ff7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>achievable sum rate</topic><topic>Channel estimation</topic><topic>Channel models</topic><topic>Closed form solutions</topic><topic>Coherence time</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Covariance matrix</topic><topic>Degrees of freedom</topic><topic>Design</topic><topic>Downlinking</topic><topic>Exact solutions</topic><topic>Feasibility</topic><topic>frequency division duplex</topic><topic>Frequency division duplexing</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Massive MIMO</topic><topic>Matrix methods</topic><topic>Matrix theory</topic><topic>MIMO (control systems)</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Precoding</topic><topic>random matrix theory</topic><topic>spatial channel correlation</topic><topic>time division duplex</topic><topic>Training</topic><topic>training sequence design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsabah, Muntadher Qasim</creatorcontrib><creatorcontrib>Vehkapera, Mikko</creatorcontrib><creatorcontrib>O'Farrell, Timothy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsabah, Muntadher Qasim</au><au>Vehkapera, Mikko</au><au>O'Farrell, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>108731</spage><epage>108747</epage><pages>108731-108747</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[This paper considers the problem of downlink (DL) training sequence design with limited coherence time for frequency division duplex (FDD) massive MIMO systems in a general scenario of single-stage precoding and distinct spatial correlations between users. To this end, a computationally feasible solution for designing the DL training sequences is proposed using the principle of linear superposition of sequences constructed from the users' channel covariance matrices. Based on the non-iterative superposition training structure and the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-degrees of freedom (<inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF) channel model, a novel closed-form solution for the optimum training sequence length that maximizes the DL achievable sum rate is provided for the eigenbeamforming (BF) precoder. Additionally, a simplified analysis that characterizes the sum rate performance of the BF and regularized zero forcing (RZF) precoders in closed-form is developed based on the method of random matrix theory and the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF channel model. The results show that the superposition training sequences achieve almost the same rate performances as state-of-the-art training sequence designs. The analysis of the complexity results demonstrates that more than four orders-of-magnitude reduction in the computational complexity is achieved using the superposition training design, which signifies the feasibility of this approach for practical implementations compared with state-of-the-art iterative algorithms for DL training designs. Importantly, the results indicate that the analytical solution for the optimum training sequence length with the <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-DoF channel model can be effectively used with high accuracy to predict the sum rate performance in the more realistic one ring (OR) channel model, and thus, near optimal solutions can be readily obtained without resorting to computationally intensive optimization techniques.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3000302</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7937-3093</orcidid><orcidid>https://orcid.org/0000-0002-7870-4097</orcidid><orcidid>https://orcid.org/0000-0002-3085-538X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.108731-108747
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9109330
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects achievable sum rate
Channel estimation
Channel models
Closed form solutions
Coherence time
Complexity
Correlation
Covariance matrix
Degrees of freedom
Design
Downlinking
Exact solutions
Feasibility
frequency division duplex
Frequency division duplexing
Iterative algorithms
Iterative methods
Massive MIMO
Matrix methods
Matrix theory
MIMO (control systems)
Optimization
Optimization techniques
Precoding
random matrix theory
spatial channel correlation
time division duplex
Training
training sequence design
title Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Iterative%20Downlink%20Training%20Sequence%20Design%20Based%20on%20Sum%20Rate%20Maximization%20in%20FDD%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20access&rft.au=Alsabah,%20Muntadher%20Qasim&rft.date=2020&rft.volume=8&rft.spage=108731&rft.epage=108747&rft.pages=108731-108747&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3000302&rft_dat=%3Cproquest_ieee_%3E2454444549%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454444549&rft_id=info:pmid/&rft_ieee_id=9109330&rft_doaj_id=oai_doaj_org_article_f928947e3e434b2db549f07d238ea6c9&rfr_iscdi=true