Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction

A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2001-02, Vol.48 (1), p.16-23
Hauptverfasser: Peter, J., Jaszczak, R.J., Hutton, B.F., Hudson, H.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 16
container_title IEEE transactions on nuclear science
container_volume 48
creator Peter, J.
Jaszczak, R.J.
Hutton, B.F.
Hudson, H.M.
description A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regression function of either time frame projections or reconstructed images. They investigated several implementations of the regression estimation procedure: (a) prior to the reconstruction, applied on the projection data, (b) iteratively, as a semi-parametric reconstruction method, and (c) applied as a post-reconstruction regression smoother. Implementation of the regression method in step (a) and (c) is independent from the algorithm used to reconstruct the projection data; (b) requires an iterative image reconstruction algorithm. Monte Carlo simulated projection data as well as clinical data have been processed to evaluate the technique. Unique regression smoothing of projection data, (a), or reconstructed images, (c), improves markedly the image statistics while preserving spatial and temporal resolution. Iterative application, (b), without the use of a relaxation parameter may result in over-smoothed time activity curves.
doi_str_mv 10.1109/23.910826
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_910826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>910826</ieee_id><sourcerecordid>575162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-ef6621525f522aa31bd9587bb9e89e4f834f41f1fb5c2107409e64a4890594fb3</originalsourceid><addsrcrecordid>eNqF0T1LA0EQBuBFFIzRwtZqsVAsLu53dkoJfkFAQQW7Y-8yG08ut3H3TvDfuxKxsNBqGOaZt5gh5JCzCecMzoWcAGdWmC0y4lrbguup3SYjxrgtQAHskr2UXnOrNNMj8nw1tO0HdQu37pt3pD2u1iG6lkZcRkypCR1NqxD6l6Zb0qajS9fjgtYuLhpX04f7y9kjbVZuiXmjDl3q41D3eWuf7HjXJjz4rmPydHX5OLsp5nfXt7OLeVFLsH2B3hjBtdBeC-Gc5NUCtJ1WFaAFVN5K5RX33Fe6FpxNFQM0yikLTIPylRyT003uOoa3AVNfrppUY9u6DsOQSuDKaGDSZnnypxRWMmms_h-aqbA59H_IlRLKmgyPf8HXMMQu36UEsMxoA19pZxtUx5BSRF-uY75s_Cg5K7-eWwpZbp6b7dHGNoj4476Hn2g7nXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>998065699</pqid></control><display><type>article</type><title>Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Peter, J. ; Jaszczak, R.J. ; Hutton, B.F. ; Hudson, H.M.</creator><creatorcontrib>Peter, J. ; Jaszczak, R.J. ; Hutton, B.F. ; Hudson, H.M.</creatorcontrib><description>A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regression function of either time frame projections or reconstructed images. They investigated several implementations of the regression estimation procedure: (a) prior to the reconstruction, applied on the projection data, (b) iteratively, as a semi-parametric reconstruction method, and (c) applied as a post-reconstruction regression smoother. Implementation of the regression method in step (a) and (c) is independent from the algorithm used to reconstruct the projection data; (b) requires an iterative image reconstruction algorithm. Monte Carlo simulated projection data as well as clinical data have been processed to evaluate the technique. Unique regression smoothing of projection data, (a), or reconstructed images, (c), improves markedly the image statistics while preserving spatial and temporal resolution. Iterative application, (b), without the use of a relaxation parameter may result in over-smoothed time activity curves.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.910826</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bandwidth ; Cardiology ; Computer simulation ; Computerized tomography ; Image reconstruction ; Iterative algorithms ; Iterative methods ; Maximum likelihood estimation ; Monte Carlo methods ; Myocardium ; Optimization ; Polynomials ; Projection ; Reconstruction ; Reconstruction algorithms ; Regression ; Regression analysis ; Smoothing methods ; Statistics</subject><ispartof>IEEE transactions on nuclear science, 2001-02, Vol.48 (1), p.16-23</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-ef6621525f522aa31bd9587bb9e89e4f834f41f1fb5c2107409e64a4890594fb3</citedby><cites>FETCH-LOGICAL-c398t-ef6621525f522aa31bd9587bb9e89e4f834f41f1fb5c2107409e64a4890594fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/910826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/910826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peter, J.</creatorcontrib><creatorcontrib>Jaszczak, R.J.</creatorcontrib><creatorcontrib>Hutton, B.F.</creatorcontrib><creatorcontrib>Hudson, H.M.</creatorcontrib><title>Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regression function of either time frame projections or reconstructed images. They investigated several implementations of the regression estimation procedure: (a) prior to the reconstruction, applied on the projection data, (b) iteratively, as a semi-parametric reconstruction method, and (c) applied as a post-reconstruction regression smoother. Implementation of the regression method in step (a) and (c) is independent from the algorithm used to reconstruct the projection data; (b) requires an iterative image reconstruction algorithm. Monte Carlo simulated projection data as well as clinical data have been processed to evaluate the technique. Unique regression smoothing of projection data, (a), or reconstructed images, (c), improves markedly the image statistics while preserving spatial and temporal resolution. Iterative application, (b), without the use of a relaxation parameter may result in over-smoothed time activity curves.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Cardiology</subject><subject>Computer simulation</subject><subject>Computerized tomography</subject><subject>Image reconstruction</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo methods</subject><subject>Myocardium</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Projection</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Smoothing methods</subject><subject>Statistics</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1LA0EQBuBFFIzRwtZqsVAsLu53dkoJfkFAQQW7Y-8yG08ut3H3TvDfuxKxsNBqGOaZt5gh5JCzCecMzoWcAGdWmC0y4lrbguup3SYjxrgtQAHskr2UXnOrNNMj8nw1tO0HdQu37pt3pD2u1iG6lkZcRkypCR1NqxD6l6Zb0qajS9fjgtYuLhpX04f7y9kjbVZuiXmjDl3q41D3eWuf7HjXJjz4rmPydHX5OLsp5nfXt7OLeVFLsH2B3hjBtdBeC-Gc5NUCtJ1WFaAFVN5K5RX33Fe6FpxNFQM0yikLTIPylRyT003uOoa3AVNfrppUY9u6DsOQSuDKaGDSZnnypxRWMmms_h-aqbA59H_IlRLKmgyPf8HXMMQu36UEsMxoA19pZxtUx5BSRF-uY75s_Cg5K7-eWwpZbp6b7dHGNoj4476Hn2g7nXY</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Peter, J.</creator><creator>Jaszczak, R.J.</creator><creator>Hutton, B.F.</creator><creator>Hudson, H.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20010201</creationdate><title>Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction</title><author>Peter, J. ; Jaszczak, R.J. ; Hutton, B.F. ; Hudson, H.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-ef6621525f522aa31bd9587bb9e89e4f834f41f1fb5c2107409e64a4890594fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Cardiology</topic><topic>Computer simulation</topic><topic>Computerized tomography</topic><topic>Image reconstruction</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo methods</topic><topic>Myocardium</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Projection</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Smoothing methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, J.</creatorcontrib><creatorcontrib>Jaszczak, R.J.</creatorcontrib><creatorcontrib>Hutton, B.F.</creatorcontrib><creatorcontrib>Hudson, H.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peter, J.</au><au>Jaszczak, R.J.</au><au>Hutton, B.F.</au><au>Hudson, H.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2001-02-01</date><risdate>2001</risdate><volume>48</volume><issue>1</issue><spage>16</spage><epage>23</epage><pages>16-23</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regression function of either time frame projections or reconstructed images. They investigated several implementations of the regression estimation procedure: (a) prior to the reconstruction, applied on the projection data, (b) iteratively, as a semi-parametric reconstruction method, and (c) applied as a post-reconstruction regression smoother. Implementation of the regression method in step (a) and (c) is independent from the algorithm used to reconstruct the projection data; (b) requires an iterative image reconstruction algorithm. Monte Carlo simulated projection data as well as clinical data have been processed to evaluate the technique. Unique regression smoothing of projection data, (a), or reconstructed images, (c), improves markedly the image statistics while preserving spatial and temporal resolution. Iterative application, (b), without the use of a relaxation parameter may result in over-smoothed time activity curves.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/23.910826</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2001-02, Vol.48 (1), p.16-23
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_910826
source IEEE Electronic Library (IEL)
subjects Algorithms
Bandwidth
Cardiology
Computer simulation
Computerized tomography
Image reconstruction
Iterative algorithms
Iterative methods
Maximum likelihood estimation
Monte Carlo methods
Myocardium
Optimization
Polynomials
Projection
Reconstruction
Reconstruction algorithms
Regression
Regression analysis
Smoothing methods
Statistics
title Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20adaptive%20temporal%20regression%20smoothing%20in%20gated%20cardiac%20SPECT%20image%20reconstruction&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Peter,%20J.&rft.date=2001-02-01&rft.volume=48&rft.issue=1&rft.spage=16&rft.epage=23&rft.pages=16-23&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.910826&rft_dat=%3Cproquest_RIE%3E575162%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=998065699&rft_id=info:pmid/&rft_ieee_id=910826&rfr_iscdi=true