Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction
A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regressi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2001-02, Vol.48 (1), p.16-23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 1 |
container_start_page | 16 |
container_title | IEEE transactions on nuclear science |
container_volume | 48 |
creator | Peter, J. Jaszczak, R.J. Hutton, B.F. Hudson, H.M. |
description | A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regression function of either time frame projections or reconstructed images. They investigated several implementations of the regression estimation procedure: (a) prior to the reconstruction, applied on the projection data, (b) iteratively, as a semi-parametric reconstruction method, and (c) applied as a post-reconstruction regression smoother. Implementation of the regression method in step (a) and (c) is independent from the algorithm used to reconstruct the projection data; (b) requires an iterative image reconstruction algorithm. Monte Carlo simulated projection data as well as clinical data have been processed to evaluate the technique. Unique regression smoothing of projection data, (a), or reconstructed images, (c), improves markedly the image statistics while preserving spatial and temporal resolution. Iterative application, (b), without the use of a relaxation parameter may result in over-smoothed time activity curves. |
doi_str_mv | 10.1109/23.910826 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_910826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>910826</ieee_id><sourcerecordid>575162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-ef6621525f522aa31bd9587bb9e89e4f834f41f1fb5c2107409e64a4890594fb3</originalsourceid><addsrcrecordid>eNqF0T1LA0EQBuBFFIzRwtZqsVAsLu53dkoJfkFAQQW7Y-8yG08ut3H3TvDfuxKxsNBqGOaZt5gh5JCzCecMzoWcAGdWmC0y4lrbguup3SYjxrgtQAHskr2UXnOrNNMj8nw1tO0HdQu37pt3pD2u1iG6lkZcRkypCR1NqxD6l6Zb0qajS9fjgtYuLhpX04f7y9kjbVZuiXmjDl3q41D3eWuf7HjXJjz4rmPydHX5OLsp5nfXt7OLeVFLsH2B3hjBtdBeC-Gc5NUCtJ1WFaAFVN5K5RX33Fe6FpxNFQM0yikLTIPylRyT003uOoa3AVNfrppUY9u6DsOQSuDKaGDSZnnypxRWMmms_h-aqbA59H_IlRLKmgyPf8HXMMQu36UEsMxoA19pZxtUx5BSRF-uY75s_Cg5K7-eWwpZbp6b7dHGNoj4476Hn2g7nXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>998065699</pqid></control><display><type>article</type><title>Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Peter, J. ; Jaszczak, R.J. ; Hutton, B.F. ; Hudson, H.M.</creator><creatorcontrib>Peter, J. ; Jaszczak, R.J. ; Hutton, B.F. ; Hudson, H.M.</creatorcontrib><description>A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regression function of either time frame projections or reconstructed images. They investigated several implementations of the regression estimation procedure: (a) prior to the reconstruction, applied on the projection data, (b) iteratively, as a semi-parametric reconstruction method, and (c) applied as a post-reconstruction regression smoother. Implementation of the regression method in step (a) and (c) is independent from the algorithm used to reconstruct the projection data; (b) requires an iterative image reconstruction algorithm. Monte Carlo simulated projection data as well as clinical data have been processed to evaluate the technique. Unique regression smoothing of projection data, (a), or reconstructed images, (c), improves markedly the image statistics while preserving spatial and temporal resolution. Iterative application, (b), without the use of a relaxation parameter may result in over-smoothed time activity curves.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.910826</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bandwidth ; Cardiology ; Computer simulation ; Computerized tomography ; Image reconstruction ; Iterative algorithms ; Iterative methods ; Maximum likelihood estimation ; Monte Carlo methods ; Myocardium ; Optimization ; Polynomials ; Projection ; Reconstruction ; Reconstruction algorithms ; Regression ; Regression analysis ; Smoothing methods ; Statistics</subject><ispartof>IEEE transactions on nuclear science, 2001-02, Vol.48 (1), p.16-23</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-ef6621525f522aa31bd9587bb9e89e4f834f41f1fb5c2107409e64a4890594fb3</citedby><cites>FETCH-LOGICAL-c398t-ef6621525f522aa31bd9587bb9e89e4f834f41f1fb5c2107409e64a4890594fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/910826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/910826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peter, J.</creatorcontrib><creatorcontrib>Jaszczak, R.J.</creatorcontrib><creatorcontrib>Hutton, B.F.</creatorcontrib><creatorcontrib>Hudson, H.M.</creatorcontrib><title>Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regression function of either time frame projections or reconstructed images. They investigated several implementations of the regression estimation procedure: (a) prior to the reconstruction, applied on the projection data, (b) iteratively, as a semi-parametric reconstruction method, and (c) applied as a post-reconstruction regression smoother. Implementation of the regression method in step (a) and (c) is independent from the algorithm used to reconstruct the projection data; (b) requires an iterative image reconstruction algorithm. Monte Carlo simulated projection data as well as clinical data have been processed to evaluate the technique. Unique regression smoothing of projection data, (a), or reconstructed images, (c), improves markedly the image statistics while preserving spatial and temporal resolution. Iterative application, (b), without the use of a relaxation parameter may result in over-smoothed time activity curves.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Cardiology</subject><subject>Computer simulation</subject><subject>Computerized tomography</subject><subject>Image reconstruction</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo methods</subject><subject>Myocardium</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Projection</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Smoothing methods</subject><subject>Statistics</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1LA0EQBuBFFIzRwtZqsVAsLu53dkoJfkFAQQW7Y-8yG08ut3H3TvDfuxKxsNBqGOaZt5gh5JCzCecMzoWcAGdWmC0y4lrbguup3SYjxrgtQAHskr2UXnOrNNMj8nw1tO0HdQu37pt3pD2u1iG6lkZcRkypCR1NqxD6l6Zb0qajS9fjgtYuLhpX04f7y9kjbVZuiXmjDl3q41D3eWuf7HjXJjz4rmPydHX5OLsp5nfXt7OLeVFLsH2B3hjBtdBeC-Gc5NUCtJ1WFaAFVN5K5RX33Fe6FpxNFQM0yikLTIPylRyT003uOoa3AVNfrppUY9u6DsOQSuDKaGDSZnnypxRWMmms_h-aqbA59H_IlRLKmgyPf8HXMMQu36UEsMxoA19pZxtUx5BSRF-uY75s_Cg5K7-eWwpZbp6b7dHGNoj4476Hn2g7nXY</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Peter, J.</creator><creator>Jaszczak, R.J.</creator><creator>Hutton, B.F.</creator><creator>Hudson, H.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20010201</creationdate><title>Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction</title><author>Peter, J. ; Jaszczak, R.J. ; Hutton, B.F. ; Hudson, H.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-ef6621525f522aa31bd9587bb9e89e4f834f41f1fb5c2107409e64a4890594fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Cardiology</topic><topic>Computer simulation</topic><topic>Computerized tomography</topic><topic>Image reconstruction</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo methods</topic><topic>Myocardium</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Projection</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Smoothing methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, J.</creatorcontrib><creatorcontrib>Jaszczak, R.J.</creatorcontrib><creatorcontrib>Hutton, B.F.</creatorcontrib><creatorcontrib>Hudson, H.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peter, J.</au><au>Jaszczak, R.J.</au><au>Hutton, B.F.</au><au>Hudson, H.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2001-02-01</date><risdate>2001</risdate><volume>48</volume><issue>1</issue><spage>16</spage><epage>23</epage><pages>16-23</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A data-driven weighted polynomial regression estimator with variable bandwidth and adaptation of the order of the polynomial can enhance the diagnosis of both ventricular function and myocardial perfusion in gated cardiac SPECT. The authors propose a temporal approach which estimates a mean regression function of either time frame projections or reconstructed images. They investigated several implementations of the regression estimation procedure: (a) prior to the reconstruction, applied on the projection data, (b) iteratively, as a semi-parametric reconstruction method, and (c) applied as a post-reconstruction regression smoother. Implementation of the regression method in step (a) and (c) is independent from the algorithm used to reconstruct the projection data; (b) requires an iterative image reconstruction algorithm. Monte Carlo simulated projection data as well as clinical data have been processed to evaluate the technique. Unique regression smoothing of projection data, (a), or reconstructed images, (c), improves markedly the image statistics while preserving spatial and temporal resolution. Iterative application, (b), without the use of a relaxation parameter may result in over-smoothed time activity curves.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/23.910826</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2001-02, Vol.48 (1), p.16-23 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_910826 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bandwidth Cardiology Computer simulation Computerized tomography Image reconstruction Iterative algorithms Iterative methods Maximum likelihood estimation Monte Carlo methods Myocardium Optimization Polynomials Projection Reconstruction Reconstruction algorithms Regression Regression analysis Smoothing methods Statistics |
title | Fully adaptive temporal regression smoothing in gated cardiac SPECT image reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20adaptive%20temporal%20regression%20smoothing%20in%20gated%20cardiac%20SPECT%20image%20reconstruction&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Peter,%20J.&rft.date=2001-02-01&rft.volume=48&rft.issue=1&rft.spage=16&rft.epage=23&rft.pages=16-23&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.910826&rft_dat=%3Cproquest_RIE%3E575162%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=998065699&rft_id=info:pmid/&rft_ieee_id=910826&rfr_iscdi=true |