Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks

The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative advers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.103385-103394
Hauptverfasser: Yang, Jingjing, Liu, Jiaxing, Wu, Jinzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103394
container_issue
container_start_page 103385
container_title IEEE access
container_volume 8
creator Yang, Jingjing
Liu, Jiaxing
Wu, Jinzhao
description The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative adversarial network parameters are compressed by segmenting the facial images into blocks and extracting the principal components of the segmented image. The generator and discriminator in the generative adversarial network then generate images similar to the original facial images; the facial images generated by the generator, as-driven by the target recognition network, markedly different from the original facial images. As the generator, discriminator, and target recognition network compete with each other, minor perturbation is added to the principal components of the facial images to protect the users' privacy and prevent distinct face-related features of the images from being easily extracted. Experimental results show that the proposed method outperforms other similar methods in terms of generated image quality, operation speed, and target recognition network accuracy.
doi_str_mv 10.1109/ACCESS.2020.2999449
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9106374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9106374</ieee_id><doaj_id>oai_doaj_org_article_3594701131fa411b981dbdd43f4a7ff5</doaj_id><sourcerecordid>2454428628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgUX-Bl4Dn1v3MZo9taLVQUKiel8lmtqS22bobhf57t6aIc5nhzXtvBl6W3VMyoZTox2lVzdfrCSOMTJjWWgh9kY0YLfSYS15c_puvs7sYtyRVmSCpRpldgG1hly_3sMH8NbTfYI-p-x5t3_oun0HEJk9D2nW2PSRu5fcH32HXx9y7fNp8Y4gQTi5r3OwTngSD32zn7Ue8za4c7CLenftN9r6Yv1XP49XL07KarsZWkLIfo3JCICrudEProtZAUWNJldREW4JKFpAel7qpnVQ0sRwAS5iSltiS8ZtsOfg2HrbmENo9hKPx0JpfwIeNgdC3doeGSy0UoZRTB4LSWpe0qZtGcCdAOSeT18PgdQj-8wtjb7b-K3TpfcOEFIKVBSsTiw8sG3yMAd3fVUrMKRwzhGNO4ZhzOEl1P6haRPxTaEoKrgT_AZ8yioU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454428628</pqid></control><display><type>article</type><title>Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Jingjing ; Liu, Jiaxing ; Wu, Jinzhao</creator><creatorcontrib>Yang, Jingjing ; Liu, Jiaxing ; Wu, Jinzhao</creatorcontrib><description>The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative adversarial network parameters are compressed by segmenting the facial images into blocks and extracting the principal components of the segmented image. The generator and discriminator in the generative adversarial network then generate images similar to the original facial images; the facial images generated by the generator, as-driven by the target recognition network, markedly different from the original facial images. As the generator, discriminator, and target recognition network compete with each other, minor perturbation is added to the principal components of the facial images to protect the users' privacy and prevent distinct face-related features of the images from being easily extracted. Experimental results show that the proposed method outperforms other similar methods in terms of generated image quality, operation speed, and target recognition network accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2999449</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adversarial samples ; Face recognition ; Facial image privacy protection ; Feature extraction ; generative adversarial network ; Generators ; Image quality ; Image segmentation ; Linear algebra ; Object recognition ; Perturbation ; Perturbation methods ; Principal component analysis ; principal components ; Privacy ; Security management ; Target recognition</subject><ispartof>IEEE access, 2020, Vol.8, p.103385-103394</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823</citedby><cites>FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823</cites><orcidid>0000-0002-8284-6514 ; 0000-0002-2527-6017 ; 0000-0003-2751-2930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9106374$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Liu, Jiaxing</creatorcontrib><creatorcontrib>Wu, Jinzhao</creatorcontrib><title>Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks</title><title>IEEE access</title><addtitle>Access</addtitle><description>The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative adversarial network parameters are compressed by segmenting the facial images into blocks and extracting the principal components of the segmented image. The generator and discriminator in the generative adversarial network then generate images similar to the original facial images; the facial images generated by the generator, as-driven by the target recognition network, markedly different from the original facial images. As the generator, discriminator, and target recognition network compete with each other, minor perturbation is added to the principal components of the facial images to protect the users' privacy and prevent distinct face-related features of the images from being easily extracted. Experimental results show that the proposed method outperforms other similar methods in terms of generated image quality, operation speed, and target recognition network accuracy.</description><subject>adversarial samples</subject><subject>Face recognition</subject><subject>Facial image privacy protection</subject><subject>Feature extraction</subject><subject>generative adversarial network</subject><subject>Generators</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Linear algebra</subject><subject>Object recognition</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Principal component analysis</subject><subject>principal components</subject><subject>Privacy</subject><subject>Security management</subject><subject>Target recognition</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgUX-Bl4Dn1v3MZo9taLVQUKiel8lmtqS22bobhf57t6aIc5nhzXtvBl6W3VMyoZTox2lVzdfrCSOMTJjWWgh9kY0YLfSYS15c_puvs7sYtyRVmSCpRpldgG1hly_3sMH8NbTfYI-p-x5t3_oun0HEJk9D2nW2PSRu5fcH32HXx9y7fNp8Y4gQTi5r3OwTngSD32zn7Ue8za4c7CLenftN9r6Yv1XP49XL07KarsZWkLIfo3JCICrudEProtZAUWNJldREW4JKFpAel7qpnVQ0sRwAS5iSltiS8ZtsOfg2HrbmENo9hKPx0JpfwIeNgdC3doeGSy0UoZRTB4LSWpe0qZtGcCdAOSeT18PgdQj-8wtjb7b-K3TpfcOEFIKVBSsTiw8sG3yMAd3fVUrMKRwzhGNO4ZhzOEl1P6haRPxTaEoKrgT_AZ8yioU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Jingjing</creator><creator>Liu, Jiaxing</creator><creator>Wu, Jinzhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8284-6514</orcidid><orcidid>https://orcid.org/0000-0002-2527-6017</orcidid><orcidid>https://orcid.org/0000-0003-2751-2930</orcidid></search><sort><creationdate>2020</creationdate><title>Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks</title><author>Yang, Jingjing ; Liu, Jiaxing ; Wu, Jinzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adversarial samples</topic><topic>Face recognition</topic><topic>Facial image privacy protection</topic><topic>Feature extraction</topic><topic>generative adversarial network</topic><topic>Generators</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Linear algebra</topic><topic>Object recognition</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Principal component analysis</topic><topic>principal components</topic><topic>Privacy</topic><topic>Security management</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Liu, Jiaxing</creatorcontrib><creatorcontrib>Wu, Jinzhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jingjing</au><au>Liu, Jiaxing</au><au>Wu, Jinzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>103385</spage><epage>103394</epage><pages>103385-103394</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative adversarial network parameters are compressed by segmenting the facial images into blocks and extracting the principal components of the segmented image. The generator and discriminator in the generative adversarial network then generate images similar to the original facial images; the facial images generated by the generator, as-driven by the target recognition network, markedly different from the original facial images. As the generator, discriminator, and target recognition network compete with each other, minor perturbation is added to the principal components of the facial images to protect the users' privacy and prevent distinct face-related features of the images from being easily extracted. Experimental results show that the proposed method outperforms other similar methods in terms of generated image quality, operation speed, and target recognition network accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2999449</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8284-6514</orcidid><orcidid>https://orcid.org/0000-0002-2527-6017</orcidid><orcidid>https://orcid.org/0000-0003-2751-2930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.103385-103394
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9106374
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects adversarial samples
Face recognition
Facial image privacy protection
Feature extraction
generative adversarial network
Generators
Image quality
Image segmentation
Linear algebra
Object recognition
Perturbation
Perturbation methods
Principal component analysis
principal components
Privacy
Security management
Target recognition
title Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20Image%20Privacy%20Protection%20Based%20on%20Principal%20Components%20of%20Adversarial%20Segmented%20Image%20Blocks&rft.jtitle=IEEE%20access&rft.au=Yang,%20Jingjing&rft.date=2020&rft.volume=8&rft.spage=103385&rft.epage=103394&rft.pages=103385-103394&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2999449&rft_dat=%3Cproquest_ieee_%3E2454428628%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454428628&rft_id=info:pmid/&rft_ieee_id=9106374&rft_doaj_id=oai_doaj_org_article_3594701131fa411b981dbdd43f4a7ff5&rfr_iscdi=true