ARSH-FATI: A Novel Metaheuristic for Cluster Head Selection in Wireless Sensor Networks
Wireless sensor network (WSN) consists of a large number of sensor nodes distributed over a certain target area. The WSN plays a vital role in surveillance, advanced healthcare, and commercialized industrial automation. Enhancing energy-efficiency of the WSN is a prime concern because higher energy...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2021-06, Vol.15 (2), p.2386-2397 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wireless sensor network (WSN) consists of a large number of sensor nodes distributed over a certain target area. The WSN plays a vital role in surveillance, advanced healthcare, and commercialized industrial automation. Enhancing energy-efficiency of the WSN is a prime concern because higher energy consumption restricts the lifetime (LT) of the network. Clustering is a powerful technique widely adopted to increase LT of the network and reduce the transmission energy consumption. In this article (LT) we develop a novel ARSH-FATI-based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called novel ranked-based clustering (NRC) to reduce the communication energy consumption of the sensor nodes while efficiently enhancing LT of the network. Unlike other population-based algorithms ARSH-FATI-CHS dynamically switches between exploration and exploitation of the search process during run-time to achieve higher performance trade-off and significantly increase LT of the network. ARSH-FATI-CHS considers the residual energy, communication distance parameters, and workload during cluster heads (CHs) selection. We simulate our proposed ARSH-FATI-CHS and generate various results to determine the performance of the WSN in terms of LT. We compare our results with state-of-the-art particle swarm optimization (PSO) and prove that ARSH-FATI-CHS approach improves the LT of the network by \sim \text{25}\%. |
---|---|
ISSN: | 1932-8184 1937-9234 |
DOI: | 10.1109/JSYST.2020.2986811 |