CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening

Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.102733-102747
Hauptverfasser: Tabassum, Munazza, Khan, Tariq M., Arsalan, Muhammad, Naqvi, Syed Saud, Ahmed, Mansoor, Madni, Hussain Ahmed, Mirza, Jawad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102747
container_issue
container_start_page 102733
container_title IEEE access
container_volume 8
creator Tabassum, Munazza
Khan, Tariq M.
Arsalan, Muhammad
Naqvi, Syed Saud
Ahmed, Mansoor
Madni, Hussain Ahmed
Mirza, Jawad
description Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photography is used for examining the optic disc (OD) which is an important step in the diagnoses of glaucoma. This is done by estimating the cup-to-disc ratio (CDR). In this paper, we proposed a Cup Disc Encoder Decoder Network (CDED-Net) for the joint segmentation of optic disc (OD) and optic cup (OC). We have eradicated the pre-processing and post-processing steps to reduce the computational cost of the overall system. Segmentation of (OD) and OC is modeled as a semantic pixel-wise labeling problem. The model was trained on the DRISHTI-GS, RIM-ONE and REFUGE datasets. Experiments show that our CDED-Net system achieves state-of-the-art OD and OC segmentation results on these datasets.
doi_str_mv 10.1109/ACCESS.2020.2998635
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9103492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9103492</ieee_id><doaj_id>oai_doaj_org_article_0e158d209548427dae91f79249b9fdbe</doaj_id><sourcerecordid>2454428652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b008154e20ba4263b03a221274f49aaf5385cd10df990d00597da8ceb7ae3d953</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAv6MUS5xQ_k5hblZZSVNFD4Gw58bpK1cbBSQ78PS6pKvayu6Od2ZEmimYEzwnB8nmR56uimFNM8ZxKmSVM3EQTShIZM8GS23_zfTTtugMOlQVIpJNoly9Xy_gD-hf07uqmRwXsT9D0uq9dg5xFu7avK7SsuwrpxlzWfGiRdR6tj3qo3EmjovIATd3sH6M7q48dTC_9Ifp6XX3mb_F2t97ki21ccZz1cXl2IDhQXGpOE1ZipiklNOWWS62tYJmoDMHGSokNxkKmRmcVlKkGZqRgD9Fm1DVOH1Tr65P2P8rpWv0Bzu-V9sHqERQGIjJDsRQ84zTogCQ2lZTLUlpTQtB6GrVa774H6Hp1cINvgn1FueCcZomg4YqNV5V3XefBXr8SrM5BqDEIdQ5CXYIIrNnIqgHgypAEMy4p-wXaoIFR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454428652</pqid></control><display><type>article</type><title>CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tabassum, Munazza ; Khan, Tariq M. ; Arsalan, Muhammad ; Naqvi, Syed Saud ; Ahmed, Mansoor ; Madni, Hussain Ahmed ; Mirza, Jawad</creator><creatorcontrib>Tabassum, Munazza ; Khan, Tariq M. ; Arsalan, Muhammad ; Naqvi, Syed Saud ; Ahmed, Mansoor ; Madni, Hussain Ahmed ; Mirza, Jawad</creatorcontrib><description>Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photography is used for examining the optic disc (OD) which is an important step in the diagnoses of glaucoma. This is done by estimating the cup-to-disc ratio (CDR). In this paper, we proposed a Cup Disc Encoder Decoder Network (CDED-Net) for the joint segmentation of optic disc (OD) and optic cup (OC). We have eradicated the pre-processing and post-processing steps to reduce the computational cost of the overall system. Segmentation of (OD) and OC is modeled as a semantic pixel-wise labeling problem. The model was trained on the DRISHTI-GS, RIM-ONE and REFUGE datasets. Experiments show that our CDED-Net system achieves state-of-the-art OD and OC segmentation results on these datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2998635</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Blindness ; Cataracts ; Coders ; Computer architecture ; Datasets ; Decoding ; deep convolutional neural network ; Eye diseases ; Glaucoma ; Glaucoma diagnosis ; Image segmentation ; OD and OC segmentation ; Optical distortion ; Optical imaging ; Post-production processing ; Retina ; Robustness ; Segmentation ; semantic segmentation ; Signs and symptoms</subject><ispartof>IEEE access, 2020, Vol.8, p.102733-102747</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b008154e20ba4263b03a221274f49aaf5385cd10df990d00597da8ceb7ae3d953</citedby><cites>FETCH-LOGICAL-c408t-b008154e20ba4263b03a221274f49aaf5385cd10df990d00597da8ceb7ae3d953</cites><orcidid>0000-0002-3222-1698 ; 0000-0001-8129-321X ; 0000-0002-7477-1591 ; 0000-0003-2034-1403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9103492$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Tabassum, Munazza</creatorcontrib><creatorcontrib>Khan, Tariq M.</creatorcontrib><creatorcontrib>Arsalan, Muhammad</creatorcontrib><creatorcontrib>Naqvi, Syed Saud</creatorcontrib><creatorcontrib>Ahmed, Mansoor</creatorcontrib><creatorcontrib>Madni, Hussain Ahmed</creatorcontrib><creatorcontrib>Mirza, Jawad</creatorcontrib><title>CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening</title><title>IEEE access</title><addtitle>Access</addtitle><description>Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photography is used for examining the optic disc (OD) which is an important step in the diagnoses of glaucoma. This is done by estimating the cup-to-disc ratio (CDR). In this paper, we proposed a Cup Disc Encoder Decoder Network (CDED-Net) for the joint segmentation of optic disc (OD) and optic cup (OC). We have eradicated the pre-processing and post-processing steps to reduce the computational cost of the overall system. Segmentation of (OD) and OC is modeled as a semantic pixel-wise labeling problem. The model was trained on the DRISHTI-GS, RIM-ONE and REFUGE datasets. Experiments show that our CDED-Net system achieves state-of-the-art OD and OC segmentation results on these datasets.</description><subject>Blindness</subject><subject>Cataracts</subject><subject>Coders</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Decoding</subject><subject>deep convolutional neural network</subject><subject>Eye diseases</subject><subject>Glaucoma</subject><subject>Glaucoma diagnosis</subject><subject>Image segmentation</subject><subject>OD and OC segmentation</subject><subject>Optical distortion</subject><subject>Optical imaging</subject><subject>Post-production processing</subject><subject>Retina</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>semantic segmentation</subject><subject>Signs and symptoms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAv6MUS5xQ_k5hblZZSVNFD4Gw58bpK1cbBSQ78PS6pKvayu6Od2ZEmimYEzwnB8nmR56uimFNM8ZxKmSVM3EQTShIZM8GS23_zfTTtugMOlQVIpJNoly9Xy_gD-hf07uqmRwXsT9D0uq9dg5xFu7avK7SsuwrpxlzWfGiRdR6tj3qo3EmjovIATd3sH6M7q48dTC_9Ifp6XX3mb_F2t97ki21ccZz1cXl2IDhQXGpOE1ZipiklNOWWS62tYJmoDMHGSokNxkKmRmcVlKkGZqRgD9Fm1DVOH1Tr65P2P8rpWv0Bzu-V9sHqERQGIjJDsRQ84zTogCQ2lZTLUlpTQtB6GrVa774H6Hp1cINvgn1FueCcZomg4YqNV5V3XefBXr8SrM5BqDEIdQ5CXYIIrNnIqgHgypAEMy4p-wXaoIFR</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tabassum, Munazza</creator><creator>Khan, Tariq M.</creator><creator>Arsalan, Muhammad</creator><creator>Naqvi, Syed Saud</creator><creator>Ahmed, Mansoor</creator><creator>Madni, Hussain Ahmed</creator><creator>Mirza, Jawad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3222-1698</orcidid><orcidid>https://orcid.org/0000-0001-8129-321X</orcidid><orcidid>https://orcid.org/0000-0002-7477-1591</orcidid><orcidid>https://orcid.org/0000-0003-2034-1403</orcidid></search><sort><creationdate>2020</creationdate><title>CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening</title><author>Tabassum, Munazza ; Khan, Tariq M. ; Arsalan, Muhammad ; Naqvi, Syed Saud ; Ahmed, Mansoor ; Madni, Hussain Ahmed ; Mirza, Jawad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b008154e20ba4263b03a221274f49aaf5385cd10df990d00597da8ceb7ae3d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blindness</topic><topic>Cataracts</topic><topic>Coders</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Decoding</topic><topic>deep convolutional neural network</topic><topic>Eye diseases</topic><topic>Glaucoma</topic><topic>Glaucoma diagnosis</topic><topic>Image segmentation</topic><topic>OD and OC segmentation</topic><topic>Optical distortion</topic><topic>Optical imaging</topic><topic>Post-production processing</topic><topic>Retina</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>semantic segmentation</topic><topic>Signs and symptoms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabassum, Munazza</creatorcontrib><creatorcontrib>Khan, Tariq M.</creatorcontrib><creatorcontrib>Arsalan, Muhammad</creatorcontrib><creatorcontrib>Naqvi, Syed Saud</creatorcontrib><creatorcontrib>Ahmed, Mansoor</creatorcontrib><creatorcontrib>Madni, Hussain Ahmed</creatorcontrib><creatorcontrib>Mirza, Jawad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabassum, Munazza</au><au>Khan, Tariq M.</au><au>Arsalan, Muhammad</au><au>Naqvi, Syed Saud</au><au>Ahmed, Mansoor</au><au>Madni, Hussain Ahmed</au><au>Mirza, Jawad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>102733</spage><epage>102747</epage><pages>102733-102747</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photography is used for examining the optic disc (OD) which is an important step in the diagnoses of glaucoma. This is done by estimating the cup-to-disc ratio (CDR). In this paper, we proposed a Cup Disc Encoder Decoder Network (CDED-Net) for the joint segmentation of optic disc (OD) and optic cup (OC). We have eradicated the pre-processing and post-processing steps to reduce the computational cost of the overall system. Segmentation of (OD) and OC is modeled as a semantic pixel-wise labeling problem. The model was trained on the DRISHTI-GS, RIM-ONE and REFUGE datasets. Experiments show that our CDED-Net system achieves state-of-the-art OD and OC segmentation results on these datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2998635</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3222-1698</orcidid><orcidid>https://orcid.org/0000-0001-8129-321X</orcidid><orcidid>https://orcid.org/0000-0002-7477-1591</orcidid><orcidid>https://orcid.org/0000-0003-2034-1403</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.102733-102747
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9103492
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Blindness
Cataracts
Coders
Computer architecture
Datasets
Decoding
deep convolutional neural network
Eye diseases
Glaucoma
Glaucoma diagnosis
Image segmentation
OD and OC segmentation
Optical distortion
Optical imaging
Post-production processing
Retina
Robustness
Segmentation
semantic segmentation
Signs and symptoms
title CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CDED-Net:%20Joint%20Segmentation%20of%20Optic%20Disc%20and%20Optic%20Cup%20for%20Glaucoma%20Screening&rft.jtitle=IEEE%20access&rft.au=Tabassum,%20Munazza&rft.date=2020&rft.volume=8&rft.spage=102733&rft.epage=102747&rft.pages=102733-102747&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2998635&rft_dat=%3Cproquest_ieee_%3E2454428652%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454428652&rft_id=info:pmid/&rft_ieee_id=9103492&rft_doaj_id=oai_doaj_org_article_0e158d209548427dae91f79249b9fdbe&rfr_iscdi=true