CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening
Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.102733-102747 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102747 |
---|---|
container_issue | |
container_start_page | 102733 |
container_title | IEEE access |
container_volume | 8 |
creator | Tabassum, Munazza Khan, Tariq M. Arsalan, Muhammad Naqvi, Syed Saud Ahmed, Mansoor Madni, Hussain Ahmed Mirza, Jawad |
description | Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photography is used for examining the optic disc (OD) which is an important step in the diagnoses of glaucoma. This is done by estimating the cup-to-disc ratio (CDR). In this paper, we proposed a Cup Disc Encoder Decoder Network (CDED-Net) for the joint segmentation of optic disc (OD) and optic cup (OC). We have eradicated the pre-processing and post-processing steps to reduce the computational cost of the overall system. Segmentation of (OD) and OC is modeled as a semantic pixel-wise labeling problem. The model was trained on the DRISHTI-GS, RIM-ONE and REFUGE datasets. Experiments show that our CDED-Net system achieves state-of-the-art OD and OC segmentation results on these datasets. |
doi_str_mv | 10.1109/ACCESS.2020.2998635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9103492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9103492</ieee_id><doaj_id>oai_doaj_org_article_0e158d209548427dae91f79249b9fdbe</doaj_id><sourcerecordid>2454428652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b008154e20ba4263b03a221274f49aaf5385cd10df990d00597da8ceb7ae3d953</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAv6MUS5xQ_k5hblZZSVNFD4Gw58bpK1cbBSQ78PS6pKvayu6Od2ZEmimYEzwnB8nmR56uimFNM8ZxKmSVM3EQTShIZM8GS23_zfTTtugMOlQVIpJNoly9Xy_gD-hf07uqmRwXsT9D0uq9dg5xFu7avK7SsuwrpxlzWfGiRdR6tj3qo3EmjovIATd3sH6M7q48dTC_9Ifp6XX3mb_F2t97ki21ccZz1cXl2IDhQXGpOE1ZipiklNOWWS62tYJmoDMHGSokNxkKmRmcVlKkGZqRgD9Fm1DVOH1Tr65P2P8rpWv0Bzu-V9sHqERQGIjJDsRQ84zTogCQ2lZTLUlpTQtB6GrVa774H6Hp1cINvgn1FueCcZomg4YqNV5V3XefBXr8SrM5BqDEIdQ5CXYIIrNnIqgHgypAEMy4p-wXaoIFR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454428652</pqid></control><display><type>article</type><title>CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tabassum, Munazza ; Khan, Tariq M. ; Arsalan, Muhammad ; Naqvi, Syed Saud ; Ahmed, Mansoor ; Madni, Hussain Ahmed ; Mirza, Jawad</creator><creatorcontrib>Tabassum, Munazza ; Khan, Tariq M. ; Arsalan, Muhammad ; Naqvi, Syed Saud ; Ahmed, Mansoor ; Madni, Hussain Ahmed ; Mirza, Jawad</creatorcontrib><description>Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photography is used for examining the optic disc (OD) which is an important step in the diagnoses of glaucoma. This is done by estimating the cup-to-disc ratio (CDR). In this paper, we proposed a Cup Disc Encoder Decoder Network (CDED-Net) for the joint segmentation of optic disc (OD) and optic cup (OC). We have eradicated the pre-processing and post-processing steps to reduce the computational cost of the overall system. Segmentation of (OD) and OC is modeled as a semantic pixel-wise labeling problem. The model was trained on the DRISHTI-GS, RIM-ONE and REFUGE datasets. Experiments show that our CDED-Net system achieves state-of-the-art OD and OC segmentation results on these datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2998635</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Blindness ; Cataracts ; Coders ; Computer architecture ; Datasets ; Decoding ; deep convolutional neural network ; Eye diseases ; Glaucoma ; Glaucoma diagnosis ; Image segmentation ; OD and OC segmentation ; Optical distortion ; Optical imaging ; Post-production processing ; Retina ; Robustness ; Segmentation ; semantic segmentation ; Signs and symptoms</subject><ispartof>IEEE access, 2020, Vol.8, p.102733-102747</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b008154e20ba4263b03a221274f49aaf5385cd10df990d00597da8ceb7ae3d953</citedby><cites>FETCH-LOGICAL-c408t-b008154e20ba4263b03a221274f49aaf5385cd10df990d00597da8ceb7ae3d953</cites><orcidid>0000-0002-3222-1698 ; 0000-0001-8129-321X ; 0000-0002-7477-1591 ; 0000-0003-2034-1403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9103492$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Tabassum, Munazza</creatorcontrib><creatorcontrib>Khan, Tariq M.</creatorcontrib><creatorcontrib>Arsalan, Muhammad</creatorcontrib><creatorcontrib>Naqvi, Syed Saud</creatorcontrib><creatorcontrib>Ahmed, Mansoor</creatorcontrib><creatorcontrib>Madni, Hussain Ahmed</creatorcontrib><creatorcontrib>Mirza, Jawad</creatorcontrib><title>CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening</title><title>IEEE access</title><addtitle>Access</addtitle><description>Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photography is used for examining the optic disc (OD) which is an important step in the diagnoses of glaucoma. This is done by estimating the cup-to-disc ratio (CDR). In this paper, we proposed a Cup Disc Encoder Decoder Network (CDED-Net) for the joint segmentation of optic disc (OD) and optic cup (OC). We have eradicated the pre-processing and post-processing steps to reduce the computational cost of the overall system. Segmentation of (OD) and OC is modeled as a semantic pixel-wise labeling problem. The model was trained on the DRISHTI-GS, RIM-ONE and REFUGE datasets. Experiments show that our CDED-Net system achieves state-of-the-art OD and OC segmentation results on these datasets.</description><subject>Blindness</subject><subject>Cataracts</subject><subject>Coders</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Decoding</subject><subject>deep convolutional neural network</subject><subject>Eye diseases</subject><subject>Glaucoma</subject><subject>Glaucoma diagnosis</subject><subject>Image segmentation</subject><subject>OD and OC segmentation</subject><subject>Optical distortion</subject><subject>Optical imaging</subject><subject>Post-production processing</subject><subject>Retina</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>semantic segmentation</subject><subject>Signs and symptoms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAv6MUS5xQ_k5hblZZSVNFD4Gw58bpK1cbBSQ78PS6pKvayu6Od2ZEmimYEzwnB8nmR56uimFNM8ZxKmSVM3EQTShIZM8GS23_zfTTtugMOlQVIpJNoly9Xy_gD-hf07uqmRwXsT9D0uq9dg5xFu7avK7SsuwrpxlzWfGiRdR6tj3qo3EmjovIATd3sH6M7q48dTC_9Ifp6XX3mb_F2t97ki21ccZz1cXl2IDhQXGpOE1ZipiklNOWWS62tYJmoDMHGSokNxkKmRmcVlKkGZqRgD9Fm1DVOH1Tr65P2P8rpWv0Bzu-V9sHqERQGIjJDsRQ84zTogCQ2lZTLUlpTQtB6GrVa774H6Hp1cINvgn1FueCcZomg4YqNV5V3XefBXr8SrM5BqDEIdQ5CXYIIrNnIqgHgypAEMy4p-wXaoIFR</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tabassum, Munazza</creator><creator>Khan, Tariq M.</creator><creator>Arsalan, Muhammad</creator><creator>Naqvi, Syed Saud</creator><creator>Ahmed, Mansoor</creator><creator>Madni, Hussain Ahmed</creator><creator>Mirza, Jawad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3222-1698</orcidid><orcidid>https://orcid.org/0000-0001-8129-321X</orcidid><orcidid>https://orcid.org/0000-0002-7477-1591</orcidid><orcidid>https://orcid.org/0000-0003-2034-1403</orcidid></search><sort><creationdate>2020</creationdate><title>CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening</title><author>Tabassum, Munazza ; Khan, Tariq M. ; Arsalan, Muhammad ; Naqvi, Syed Saud ; Ahmed, Mansoor ; Madni, Hussain Ahmed ; Mirza, Jawad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b008154e20ba4263b03a221274f49aaf5385cd10df990d00597da8ceb7ae3d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blindness</topic><topic>Cataracts</topic><topic>Coders</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Decoding</topic><topic>deep convolutional neural network</topic><topic>Eye diseases</topic><topic>Glaucoma</topic><topic>Glaucoma diagnosis</topic><topic>Image segmentation</topic><topic>OD and OC segmentation</topic><topic>Optical distortion</topic><topic>Optical imaging</topic><topic>Post-production processing</topic><topic>Retina</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>semantic segmentation</topic><topic>Signs and symptoms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabassum, Munazza</creatorcontrib><creatorcontrib>Khan, Tariq M.</creatorcontrib><creatorcontrib>Arsalan, Muhammad</creatorcontrib><creatorcontrib>Naqvi, Syed Saud</creatorcontrib><creatorcontrib>Ahmed, Mansoor</creatorcontrib><creatorcontrib>Madni, Hussain Ahmed</creatorcontrib><creatorcontrib>Mirza, Jawad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabassum, Munazza</au><au>Khan, Tariq M.</au><au>Arsalan, Muhammad</au><au>Naqvi, Syed Saud</au><au>Ahmed, Mansoor</au><au>Madni, Hussain Ahmed</au><au>Mirza, Jawad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>102733</spage><epage>102747</epage><pages>102733-102747</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Glaucoma is an eye disease that can cause loss of vision by damaging the optic nerve. It is the world's second leading cause of blindness after cataracts. Early diagnosis of glaucoma is a key to prevent permanent blindness as it has no noticeable symptoms in its early stages. Color fundus photography is used for examining the optic disc (OD) which is an important step in the diagnoses of glaucoma. This is done by estimating the cup-to-disc ratio (CDR). In this paper, we proposed a Cup Disc Encoder Decoder Network (CDED-Net) for the joint segmentation of optic disc (OD) and optic cup (OC). We have eradicated the pre-processing and post-processing steps to reduce the computational cost of the overall system. Segmentation of (OD) and OC is modeled as a semantic pixel-wise labeling problem. The model was trained on the DRISHTI-GS, RIM-ONE and REFUGE datasets. Experiments show that our CDED-Net system achieves state-of-the-art OD and OC segmentation results on these datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2998635</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3222-1698</orcidid><orcidid>https://orcid.org/0000-0001-8129-321X</orcidid><orcidid>https://orcid.org/0000-0002-7477-1591</orcidid><orcidid>https://orcid.org/0000-0003-2034-1403</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.102733-102747 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9103492 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Blindness Cataracts Coders Computer architecture Datasets Decoding deep convolutional neural network Eye diseases Glaucoma Glaucoma diagnosis Image segmentation OD and OC segmentation Optical distortion Optical imaging Post-production processing Retina Robustness Segmentation semantic segmentation Signs and symptoms |
title | CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CDED-Net:%20Joint%20Segmentation%20of%20Optic%20Disc%20and%20Optic%20Cup%20for%20Glaucoma%20Screening&rft.jtitle=IEEE%20access&rft.au=Tabassum,%20Munazza&rft.date=2020&rft.volume=8&rft.spage=102733&rft.epage=102747&rft.pages=102733-102747&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2998635&rft_dat=%3Cproquest_ieee_%3E2454428652%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454428652&rft_id=info:pmid/&rft_ieee_id=9103492&rft_doaj_id=oai_doaj_org_article_0e158d209548427dae91f79249b9fdbe&rfr_iscdi=true |