Extracting Dispersion Curves From Ambient Noise Correlations Using Deep Learning

We present a machine learning approach to classify the phases of surface wave dispersion curves. Standard frequency-time analysis (FTAN) analysis of seismograms observed on an array of receivers is converted into an image, of which each pixel is classified as fundamental mode, first overtone, or noi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2020-12, Vol.58 (12), p.8932-8939
Hauptverfasser: Zhang, Xiaotian, Jia, Zhe, Ross, Zachary E., Clayton, Robert W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8939
container_issue 12
container_start_page 8932
container_title IEEE transactions on geoscience and remote sensing
container_volume 58
creator Zhang, Xiaotian
Jia, Zhe
Ross, Zachary E.
Clayton, Robert W.
description We present a machine learning approach to classify the phases of surface wave dispersion curves. Standard frequency-time analysis (FTAN) analysis of seismograms observed on an array of receivers is converted into an image, of which each pixel is classified as fundamental mode, first overtone, or noise. We use a convolutional neural network (U-Net) architecture with a supervised learning objective and incorporate transfer learning. The training is initially performed with synthetic data to learn coarse structure, followed by fine-tuning of the network using approximately 10% of the real data based on human classification. The results show that the machine classification is nearly identical to the human picked phases. Expanding the method to process multiple images at once did not improve the performance. The developed technique will facilitate the automated processing of large dispersion curve data sets.
doi_str_mv 10.1109/TGRS.2020.2992043
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9099269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9099269</ieee_id><sourcerecordid>2465436118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-639ae5bb54800da2a3b885e8329f00925864462aee421da1562355cc21c55feb3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG-dfJocy9pWoahoew7Z7axsaXfXZCv6701t8TQM87wzw0PINYMRY2DvFrO39xEHDiNuLQcpTsiAKWUy0FKekgEwqzNuLD8nFzGuAZhU7H5AXiffffBlXzcf9KGOHYZYtw3Nd-ELI52GdkvH26LGpqfPbR2R5m0IuPF9oiJdxr8cYkfn6EOTuktyVvlNxKtjHZLldLLIH7P5y-wpH8-zUgjdZ1pYj6oolDQAK8-9KIxRaAS3FYDlyqS_NfeIkrOVZ0pzoVRZclYqVWEhhuT2sLcL7ecOY-_W7S406aTjUispNGMmUexAlaGNMWDlulBvffhxDNxenNuLc3tx7iguZW4OmRoR_3kLaayt-AXPVmjh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436118</pqid></control><display><type>article</type><title>Extracting Dispersion Curves From Ambient Noise Correlations Using Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiaotian ; Jia, Zhe ; Ross, Zachary E. ; Clayton, Robert W.</creator><creatorcontrib>Zhang, Xiaotian ; Jia, Zhe ; Ross, Zachary E. ; Clayton, Robert W.</creatorcontrib><description>We present a machine learning approach to classify the phases of surface wave dispersion curves. Standard frequency-time analysis (FTAN) analysis of seismograms observed on an array of receivers is converted into an image, of which each pixel is classified as fundamental mode, first overtone, or noise. We use a convolutional neural network (U-Net) architecture with a supervised learning objective and incorporate transfer learning. The training is initially performed with synthetic data to learn coarse structure, followed by fine-tuning of the network using approximately 10% of the real data based on human classification. The results show that the machine classification is nearly identical to the human picked phases. Expanding the method to process multiple images at once did not improve the performance. The developed technique will facilitate the automated processing of large dispersion curve data sets.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.2992043</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ambient noise ; Artificial neural networks ; Classification ; Convolutional networks ; Correlation ; Data models ; Deep learning ; Dispersion ; Dispersion curve analysis ; dispersion curves ; Frequency analysis ; Learning algorithms ; Machine learning ; Neural networks ; Noise ; Seismograms ; Surface treatment ; Surface water waves ; Surface waves ; Training ; Transfer learning ; Wave dispersion</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-12, Vol.58 (12), p.8932-8939</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-639ae5bb54800da2a3b885e8329f00925864462aee421da1562355cc21c55feb3</citedby><cites>FETCH-LOGICAL-c336t-639ae5bb54800da2a3b885e8329f00925864462aee421da1562355cc21c55feb3</cites><orcidid>0000-0002-6343-8400 ; 0000-0003-3323-3508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9099269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9099269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiaotian</creatorcontrib><creatorcontrib>Jia, Zhe</creatorcontrib><creatorcontrib>Ross, Zachary E.</creatorcontrib><creatorcontrib>Clayton, Robert W.</creatorcontrib><title>Extracting Dispersion Curves From Ambient Noise Correlations Using Deep Learning</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>We present a machine learning approach to classify the phases of surface wave dispersion curves. Standard frequency-time analysis (FTAN) analysis of seismograms observed on an array of receivers is converted into an image, of which each pixel is classified as fundamental mode, first overtone, or noise. We use a convolutional neural network (U-Net) architecture with a supervised learning objective and incorporate transfer learning. The training is initially performed with synthetic data to learn coarse structure, followed by fine-tuning of the network using approximately 10% of the real data based on human classification. The results show that the machine classification is nearly identical to the human picked phases. Expanding the method to process multiple images at once did not improve the performance. The developed technique will facilitate the automated processing of large dispersion curve data sets.</description><subject>Ambient noise</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolutional networks</subject><subject>Correlation</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Dispersion</subject><subject>Dispersion curve analysis</subject><subject>dispersion curves</subject><subject>Frequency analysis</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Seismograms</subject><subject>Surface treatment</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Wave dispersion</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG-dfJocy9pWoahoew7Z7axsaXfXZCv6701t8TQM87wzw0PINYMRY2DvFrO39xEHDiNuLQcpTsiAKWUy0FKekgEwqzNuLD8nFzGuAZhU7H5AXiffffBlXzcf9KGOHYZYtw3Nd-ELI52GdkvH26LGpqfPbR2R5m0IuPF9oiJdxr8cYkfn6EOTuktyVvlNxKtjHZLldLLIH7P5y-wpH8-zUgjdZ1pYj6oolDQAK8-9KIxRaAS3FYDlyqS_NfeIkrOVZ0pzoVRZclYqVWEhhuT2sLcL7ecOY-_W7S406aTjUispNGMmUexAlaGNMWDlulBvffhxDNxenNuLc3tx7iguZW4OmRoR_3kLaayt-AXPVmjh</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhang, Xiaotian</creator><creator>Jia, Zhe</creator><creator>Ross, Zachary E.</creator><creator>Clayton, Robert W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6343-8400</orcidid><orcidid>https://orcid.org/0000-0003-3323-3508</orcidid></search><sort><creationdate>20201201</creationdate><title>Extracting Dispersion Curves From Ambient Noise Correlations Using Deep Learning</title><author>Zhang, Xiaotian ; Jia, Zhe ; Ross, Zachary E. ; Clayton, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-639ae5bb54800da2a3b885e8329f00925864462aee421da1562355cc21c55feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ambient noise</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolutional networks</topic><topic>Correlation</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Dispersion</topic><topic>Dispersion curve analysis</topic><topic>dispersion curves</topic><topic>Frequency analysis</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Seismograms</topic><topic>Surface treatment</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaotian</creatorcontrib><creatorcontrib>Jia, Zhe</creatorcontrib><creatorcontrib>Ross, Zachary E.</creatorcontrib><creatorcontrib>Clayton, Robert W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiaotian</au><au>Jia, Zhe</au><au>Ross, Zachary E.</au><au>Clayton, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Dispersion Curves From Ambient Noise Correlations Using Deep Learning</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>58</volume><issue>12</issue><spage>8932</spage><epage>8939</epage><pages>8932-8939</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>We present a machine learning approach to classify the phases of surface wave dispersion curves. Standard frequency-time analysis (FTAN) analysis of seismograms observed on an array of receivers is converted into an image, of which each pixel is classified as fundamental mode, first overtone, or noise. We use a convolutional neural network (U-Net) architecture with a supervised learning objective and incorporate transfer learning. The training is initially performed with synthetic data to learn coarse structure, followed by fine-tuning of the network using approximately 10% of the real data based on human classification. The results show that the machine classification is nearly identical to the human picked phases. Expanding the method to process multiple images at once did not improve the performance. The developed technique will facilitate the automated processing of large dispersion curve data sets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.2992043</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6343-8400</orcidid><orcidid>https://orcid.org/0000-0003-3323-3508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2020-12, Vol.58 (12), p.8932-8939
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9099269
source IEEE Electronic Library (IEL)
subjects Ambient noise
Artificial neural networks
Classification
Convolutional networks
Correlation
Data models
Deep learning
Dispersion
Dispersion curve analysis
dispersion curves
Frequency analysis
Learning algorithms
Machine learning
Neural networks
Noise
Seismograms
Surface treatment
Surface water waves
Surface waves
Training
Transfer learning
Wave dispersion
title Extracting Dispersion Curves From Ambient Noise Correlations Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Dispersion%20Curves%20From%20Ambient%20Noise%20Correlations%20Using%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Xiaotian&rft.date=2020-12-01&rft.volume=58&rft.issue=12&rft.spage=8932&rft.epage=8939&rft.pages=8932-8939&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.2992043&rft_dat=%3Cproquest_RIE%3E2465436118%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465436118&rft_id=info:pmid/&rft_ieee_id=9099269&rfr_iscdi=true