Integration of FOC With DFVC for Interior Permanent Magnet Synchronous Machine Drives

In this paper, the drawbacks of the conventional f-t frame based maximum torque per ampere (MTPA) control schemes are analyzed and mathematically proved. In order to inherit the merits of both the direct flux vector control (DFVC) in field weakening region and field orientated control (FOC) in const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.97935-97945
Hauptverfasser: Sun, Tianfu, Wang, Jiabin, Jia, Chengli, Peng, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97945
container_issue
container_start_page 97935
container_title IEEE access
container_volume 8
creator Sun, Tianfu
Wang, Jiabin
Jia, Chengli
Peng, Lei
description In this paper, the drawbacks of the conventional f-t frame based maximum torque per ampere (MTPA) control schemes are analyzed and mathematically proved. In order to inherit the merits of both the direct flux vector control (DFVC) in field weakening region and field orientated control (FOC) in constant torque region while avoiding their disadvantages, an integrated control scheme is proposed. The proposed control scheme integrates the FOC into f-t reference frame at low speeds to achieve a relatively accurate and robust MTPA control, while at high speeds, the DFVC is adopted to utilize the advantages of f-t frame based control scheme in field weakening region. A shape function is utilized by the proposed control scheme to achieve a smooth transition between the two control schemes. The proposed control scheme is verified by experiments under various operation conditions on a prototype IPMSM drive. The simulation and experimental results illustrate that the proposed control scheme could achieve a better MTPA control accuracy in constant torque region and a better field weakening performance in the constant power region. Meanwhile the complex look-up tables for FOC in field weakening region and the difficulties in observing flux vector at low speed are avoided.
doi_str_mv 10.1109/ACCESS.2020.2996948
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9099212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9099212</ieee_id><doaj_id>oai_doaj_org_article_c05f3c212988494b95ba18301d81654b</doaj_id><sourcerecordid>2454400366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-eec5362913d72402b10622517f84cb2497d059b6381c4c33c47940081d16ccbe3</originalsourceid><addsrcrecordid>eNpNUU1rAjEUXEoLldZf4CXQszZfm02OsmorWCxY22PIZrMa0cRm14L_vtmuSHPJY5iZN7xJkgGCI4SgeB7n-XS1GmGI4QgLwQTlN0kPIyaGJCXs9t98n_Tregfj4xFKs16ynrvGbIJqrHfAV2C2zMGXbbZgMvvMQeUDaAnBxuHdhINyxjXgTW2cacDq7PQ2eOdPdYT01joDJsH-mPoxuavUvjb9y_-QrGfTj_x1uFi-zPPxYqgp5M3QGB1DYYFImWEKcYEgwzhFWcWpLjAVWQlTUTDCkaaaEE0zQdvsJWJaF4Y8JPPOt_RqJ4_BHlQ4S6-s_AN82EgVGqv3RmqYVkRjhAXnVNBCpIVCnEBUxlOktIheT53XMfjvk6kbufOn4GJ8iWlK417CWGSRjqWDr-tgqutWBGVbh-zqkG0d8lJHVA06lTXGXBUCChEDkV-TnILb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454400366</pqid></control><display><type>article</type><title>Integration of FOC With DFVC for Interior Permanent Magnet Synchronous Machine Drives</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sun, Tianfu ; Wang, Jiabin ; Jia, Chengli ; Peng, Lei</creator><creatorcontrib>Sun, Tianfu ; Wang, Jiabin ; Jia, Chengli ; Peng, Lei</creatorcontrib><description>In this paper, the drawbacks of the conventional f-t frame based maximum torque per ampere (MTPA) control schemes are analyzed and mathematically proved. In order to inherit the merits of both the direct flux vector control (DFVC) in field weakening region and field orientated control (FOC) in constant torque region while avoiding their disadvantages, an integrated control scheme is proposed. The proposed control scheme integrates the FOC into f-t reference frame at low speeds to achieve a relatively accurate and robust MTPA control, while at high speeds, the DFVC is adopted to utilize the advantages of f-t frame based control scheme in field weakening region. A shape function is utilized by the proposed control scheme to achieve a smooth transition between the two control schemes. The proposed control scheme is verified by experiments under various operation conditions on a prototype IPMSM drive. The simulation and experimental results illustrate that the proposed control scheme could achieve a better MTPA control accuracy in constant torque region and a better field weakening performance in the constant power region. Meanwhile the complex look-up tables for FOC in field weakening region and the difficulties in observing flux vector at low speed are avoided.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2996948</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>direct flux vector control (DFVC) ; Directional control ; field orientated control (FOC) ; Field weakening ; interior permanent magnet synchronous machine (IPMSM) ; Lookup tables ; Low speed ; Machine vector control ; Maximum torque per ampere (MTPA) control ; Observers ; Permanent magnets ; Resistance ; Robust control ; Shape functions ; Stator windings ; Synchronous machines ; Torque ; torque control ; Voltage control</subject><ispartof>IEEE access, 2020, Vol.8, p.97935-97945</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-eec5362913d72402b10622517f84cb2497d059b6381c4c33c47940081d16ccbe3</citedby><cites>FETCH-LOGICAL-c408t-eec5362913d72402b10622517f84cb2497d059b6381c4c33c47940081d16ccbe3</cites><orcidid>0000-0002-6507-0857 ; 0000-0002-0124-140X ; 0000-0003-4870-3744 ; 0000-0002-5518-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9099212$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4014,27624,27914,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Sun, Tianfu</creatorcontrib><creatorcontrib>Wang, Jiabin</creatorcontrib><creatorcontrib>Jia, Chengli</creatorcontrib><creatorcontrib>Peng, Lei</creatorcontrib><title>Integration of FOC With DFVC for Interior Permanent Magnet Synchronous Machine Drives</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, the drawbacks of the conventional f-t frame based maximum torque per ampere (MTPA) control schemes are analyzed and mathematically proved. In order to inherit the merits of both the direct flux vector control (DFVC) in field weakening region and field orientated control (FOC) in constant torque region while avoiding their disadvantages, an integrated control scheme is proposed. The proposed control scheme integrates the FOC into f-t reference frame at low speeds to achieve a relatively accurate and robust MTPA control, while at high speeds, the DFVC is adopted to utilize the advantages of f-t frame based control scheme in field weakening region. A shape function is utilized by the proposed control scheme to achieve a smooth transition between the two control schemes. The proposed control scheme is verified by experiments under various operation conditions on a prototype IPMSM drive. The simulation and experimental results illustrate that the proposed control scheme could achieve a better MTPA control accuracy in constant torque region and a better field weakening performance in the constant power region. Meanwhile the complex look-up tables for FOC in field weakening region and the difficulties in observing flux vector at low speed are avoided.</description><subject>direct flux vector control (DFVC)</subject><subject>Directional control</subject><subject>field orientated control (FOC)</subject><subject>Field weakening</subject><subject>interior permanent magnet synchronous machine (IPMSM)</subject><subject>Lookup tables</subject><subject>Low speed</subject><subject>Machine vector control</subject><subject>Maximum torque per ampere (MTPA) control</subject><subject>Observers</subject><subject>Permanent magnets</subject><subject>Resistance</subject><subject>Robust control</subject><subject>Shape functions</subject><subject>Stator windings</subject><subject>Synchronous machines</subject><subject>Torque</subject><subject>torque control</subject><subject>Voltage control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rAjEUXEoLldZf4CXQszZfm02OsmorWCxY22PIZrMa0cRm14L_vtmuSHPJY5iZN7xJkgGCI4SgeB7n-XS1GmGI4QgLwQTlN0kPIyaGJCXs9t98n_Tregfj4xFKs16ynrvGbIJqrHfAV2C2zMGXbbZgMvvMQeUDaAnBxuHdhINyxjXgTW2cacDq7PQ2eOdPdYT01joDJsH-mPoxuavUvjb9y_-QrGfTj_x1uFi-zPPxYqgp5M3QGB1DYYFImWEKcYEgwzhFWcWpLjAVWQlTUTDCkaaaEE0zQdvsJWJaF4Y8JPPOt_RqJ4_BHlQ4S6-s_AN82EgVGqv3RmqYVkRjhAXnVNBCpIVCnEBUxlOktIheT53XMfjvk6kbufOn4GJ8iWlK417CWGSRjqWDr-tgqutWBGVbh-zqkG0d8lJHVA06lTXGXBUCChEDkV-TnILb</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sun, Tianfu</creator><creator>Wang, Jiabin</creator><creator>Jia, Chengli</creator><creator>Peng, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6507-0857</orcidid><orcidid>https://orcid.org/0000-0002-0124-140X</orcidid><orcidid>https://orcid.org/0000-0003-4870-3744</orcidid><orcidid>https://orcid.org/0000-0002-5518-0315</orcidid></search><sort><creationdate>2020</creationdate><title>Integration of FOC With DFVC for Interior Permanent Magnet Synchronous Machine Drives</title><author>Sun, Tianfu ; Wang, Jiabin ; Jia, Chengli ; Peng, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-eec5362913d72402b10622517f84cb2497d059b6381c4c33c47940081d16ccbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>direct flux vector control (DFVC)</topic><topic>Directional control</topic><topic>field orientated control (FOC)</topic><topic>Field weakening</topic><topic>interior permanent magnet synchronous machine (IPMSM)</topic><topic>Lookup tables</topic><topic>Low speed</topic><topic>Machine vector control</topic><topic>Maximum torque per ampere (MTPA) control</topic><topic>Observers</topic><topic>Permanent magnets</topic><topic>Resistance</topic><topic>Robust control</topic><topic>Shape functions</topic><topic>Stator windings</topic><topic>Synchronous machines</topic><topic>Torque</topic><topic>torque control</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tianfu</creatorcontrib><creatorcontrib>Wang, Jiabin</creatorcontrib><creatorcontrib>Jia, Chengli</creatorcontrib><creatorcontrib>Peng, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tianfu</au><au>Wang, Jiabin</au><au>Jia, Chengli</au><au>Peng, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of FOC With DFVC for Interior Permanent Magnet Synchronous Machine Drives</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>97935</spage><epage>97945</epage><pages>97935-97945</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, the drawbacks of the conventional f-t frame based maximum torque per ampere (MTPA) control schemes are analyzed and mathematically proved. In order to inherit the merits of both the direct flux vector control (DFVC) in field weakening region and field orientated control (FOC) in constant torque region while avoiding their disadvantages, an integrated control scheme is proposed. The proposed control scheme integrates the FOC into f-t reference frame at low speeds to achieve a relatively accurate and robust MTPA control, while at high speeds, the DFVC is adopted to utilize the advantages of f-t frame based control scheme in field weakening region. A shape function is utilized by the proposed control scheme to achieve a smooth transition between the two control schemes. The proposed control scheme is verified by experiments under various operation conditions on a prototype IPMSM drive. The simulation and experimental results illustrate that the proposed control scheme could achieve a better MTPA control accuracy in constant torque region and a better field weakening performance in the constant power region. Meanwhile the complex look-up tables for FOC in field weakening region and the difficulties in observing flux vector at low speed are avoided.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2996948</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6507-0857</orcidid><orcidid>https://orcid.org/0000-0002-0124-140X</orcidid><orcidid>https://orcid.org/0000-0003-4870-3744</orcidid><orcidid>https://orcid.org/0000-0002-5518-0315</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.97935-97945
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9099212
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects direct flux vector control (DFVC)
Directional control
field orientated control (FOC)
Field weakening
interior permanent magnet synchronous machine (IPMSM)
Lookup tables
Low speed
Machine vector control
Maximum torque per ampere (MTPA) control
Observers
Permanent magnets
Resistance
Robust control
Shape functions
Stator windings
Synchronous machines
Torque
torque control
Voltage control
title Integration of FOC With DFVC for Interior Permanent Magnet Synchronous Machine Drives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20FOC%20With%20DFVC%20for%20Interior%20Permanent%20Magnet%20Synchronous%20Machine%20Drives&rft.jtitle=IEEE%20access&rft.au=Sun,%20Tianfu&rft.date=2020&rft.volume=8&rft.spage=97935&rft.epage=97945&rft.pages=97935-97945&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2996948&rft_dat=%3Cproquest_ieee_%3E2454400366%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454400366&rft_id=info:pmid/&rft_ieee_id=9099212&rft_doaj_id=oai_doaj_org_article_c05f3c212988494b95ba18301d81654b&rfr_iscdi=true