Development of Interdigitated Capacitive Sensor for Real-Time Monitoring of Sub-Micron and Nanoscale Particulate Matters in Personal Sampling Device for Mining Environment
While current personal monitoring devices for mining industry are optimized for monitoring microscale particles, a higher resolution technique is required to detect sub-micron and nanoscale particulate matters (PM) due to smaller volume and mass of the particles. In this work, an interdigitated capa...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2020-10, Vol.20 (19), p.11588-11597 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11597 |
---|---|
container_issue | 19 |
container_start_page | 11588 |
container_title | IEEE sensors journal |
container_volume | 20 |
creator | Back, Doosan Theisen, Daniel Seo, Weeseong Tsai, Candace Su-Jung Janes, David B. |
description | While current personal monitoring devices for mining industry are optimized for monitoring microscale particles, a higher resolution technique is required to detect sub-micron and nanoscale particulate matters (PM) due to smaller volume and mass of the particles. In this work, an interdigitated capacitive sensor is designed for monitoring sub-micron and nanoscale particle concentration in real-time for mining environment and other applicable environments. The 2 mm \times12 mm disposable sensor chip fits generic air sampling cassette housing. The re-usable readout board uses resistance-capacitance (RC) delay time constant for monitoring capacitance shift and data is recorded in real-time. The sensor showed clear response with respect to a commonly used test dust, and positive capacitance shift is observed after test. Among the collected particles, about 77 % are sub-micron and most of microparticles are agglomerates of sub-micron particles. A simulation study showed that our sensor response is in a region that is proportional to the particle volume collected on sensor. A comparison with gravimetric method showed that less than 1/1000 of collected particle mass on the sampler is responsible for sensor response due to radial distribution of particle deposition and sensor location. The sensor response is converted into a standard airborne mass particle concentration (g/ \text{m}^{3} ) to demonstrate a continuous monitoring of particle concentration. An incorporated microheater improved stable capacitive sensor reading under air flow and various humidity. |
doi_str_mv | 10.1109/JSEN.2020.2995960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9097254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9097254</ieee_id><sourcerecordid>2441010089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bad16bbc39ef31edf74bbe7a059e586e78d0e184eb5a92f3b7ca69b246fb3edb3</originalsourceid><addsrcrecordid>eNo9UU1LxDAQLaKgrv4A8RLw3DVp2qY5yrp-4aq4Ct7KpJ1KpJvUJLvgb_JPmrriYZhheO_NG16SnDA6ZYzK87vl_GGa0YxOMykLWdKd5IAVRZUykVe748xpmnPxtp8cev9BKZOiEAfJ9yVusLfDCk0gtiO3JqBr9bsOELAlMxig0UFvkCzReOtIF-sZoU9f9ArJwhodrNPmfSQv1ypd6MZZQ8C05AGM9Q30SJ7ABd2s-6hJFhDiCU-0IU-xWwM9WcJq6EeR6EY3-Htkoc24mZuNjoKjv6Nkr4Pe4_FfnySvV_OX2U16_3h9O7u4T5tM8pAqaFmpVMMldpxh24lcKRRAC4lFVaKoWoqsylEVILOOK9FAKVWWl53i2Co-Sc62uoOzn2v0of6waxd9-jrLc0YZpZWMKLZFxX-9d9jVg9MrcF81o_WYST1mUo-Z1H-ZRM7plqMR8R8vqRRZkfMfEu-M6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441010089</pqid></control><display><type>article</type><title>Development of Interdigitated Capacitive Sensor for Real-Time Monitoring of Sub-Micron and Nanoscale Particulate Matters in Personal Sampling Device for Mining Environment</title><source>IEEE Electronic Library (IEL)</source><creator>Back, Doosan ; Theisen, Daniel ; Seo, Weeseong ; Tsai, Candace Su-Jung ; Janes, David B.</creator><creatorcontrib>Back, Doosan ; Theisen, Daniel ; Seo, Weeseong ; Tsai, Candace Su-Jung ; Janes, David B.</creatorcontrib><description><![CDATA[While current personal monitoring devices for mining industry are optimized for monitoring microscale particles, a higher resolution technique is required to detect sub-micron and nanoscale particulate matters (PM) due to smaller volume and mass of the particles. In this work, an interdigitated capacitive sensor is designed for monitoring sub-micron and nanoscale particle concentration in real-time for mining environment and other applicable environments. The 2 mm <inline-formula> <tex-math notation="LaTeX">\times12 </tex-math></inline-formula> mm disposable sensor chip fits generic air sampling cassette housing. The re-usable readout board uses resistance-capacitance (RC) delay time constant for monitoring capacitance shift and data is recorded in real-time. The sensor showed clear response with respect to a commonly used test dust, and positive capacitance shift is observed after test. Among the collected particles, about 77 % are sub-micron and most of microparticles are agglomerates of sub-micron particles. A simulation study showed that our sensor response is in a region that is proportional to the particle volume collected on sensor. A comparison with gravimetric method showed that less than 1/1000 of collected particle mass on the sampler is responsible for sensor response due to radial distribution of particle deposition and sensor location. The sensor response is converted into a standard airborne mass particle concentration (g/<inline-formula> <tex-math notation="LaTeX">\text{m}^{3} </tex-math></inline-formula>) to demonstrate a continuous monitoring of particle concentration. An incorporated microheater improved stable capacitive sensor reading under air flow and various humidity.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.2995960</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomerates ; Air flow ; Air sampling ; Airborne sensing ; Capacitance ; capacitive sensor ; Capacitive sensors ; Delay time ; Dust control ; Environmental monitoring ; Gravimetry ; microheater ; Microparticles ; Mining industry ; Monitoring ; Nanoparticles ; Nanoscale devices ; Particle deposition ; Particle mass ; Particulate matter ; Radial distribution ; Real time ; real-time monitoring ; Real-time systems ; Sensors ; Time constant</subject><ispartof>IEEE sensors journal, 2020-10, Vol.20 (19), p.11588-11597</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bad16bbc39ef31edf74bbe7a059e586e78d0e184eb5a92f3b7ca69b246fb3edb3</citedby><cites>FETCH-LOGICAL-c293t-bad16bbc39ef31edf74bbe7a059e586e78d0e184eb5a92f3b7ca69b246fb3edb3</cites><orcidid>0000-0001-9153-9578 ; 0000-0003-1229-0538 ; 0000-0002-1482-7485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9097254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9097254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Back, Doosan</creatorcontrib><creatorcontrib>Theisen, Daniel</creatorcontrib><creatorcontrib>Seo, Weeseong</creatorcontrib><creatorcontrib>Tsai, Candace Su-Jung</creatorcontrib><creatorcontrib>Janes, David B.</creatorcontrib><title>Development of Interdigitated Capacitive Sensor for Real-Time Monitoring of Sub-Micron and Nanoscale Particulate Matters in Personal Sampling Device for Mining Environment</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[While current personal monitoring devices for mining industry are optimized for monitoring microscale particles, a higher resolution technique is required to detect sub-micron and nanoscale particulate matters (PM) due to smaller volume and mass of the particles. In this work, an interdigitated capacitive sensor is designed for monitoring sub-micron and nanoscale particle concentration in real-time for mining environment and other applicable environments. The 2 mm <inline-formula> <tex-math notation="LaTeX">\times12 </tex-math></inline-formula> mm disposable sensor chip fits generic air sampling cassette housing. The re-usable readout board uses resistance-capacitance (RC) delay time constant for monitoring capacitance shift and data is recorded in real-time. The sensor showed clear response with respect to a commonly used test dust, and positive capacitance shift is observed after test. Among the collected particles, about 77 % are sub-micron and most of microparticles are agglomerates of sub-micron particles. A simulation study showed that our sensor response is in a region that is proportional to the particle volume collected on sensor. A comparison with gravimetric method showed that less than 1/1000 of collected particle mass on the sampler is responsible for sensor response due to radial distribution of particle deposition and sensor location. The sensor response is converted into a standard airborne mass particle concentration (g/<inline-formula> <tex-math notation="LaTeX">\text{m}^{3} </tex-math></inline-formula>) to demonstrate a continuous monitoring of particle concentration. An incorporated microheater improved stable capacitive sensor reading under air flow and various humidity.]]></description><subject>Agglomerates</subject><subject>Air flow</subject><subject>Air sampling</subject><subject>Airborne sensing</subject><subject>Capacitance</subject><subject>capacitive sensor</subject><subject>Capacitive sensors</subject><subject>Delay time</subject><subject>Dust control</subject><subject>Environmental monitoring</subject><subject>Gravimetry</subject><subject>microheater</subject><subject>Microparticles</subject><subject>Mining industry</subject><subject>Monitoring</subject><subject>Nanoparticles</subject><subject>Nanoscale devices</subject><subject>Particle deposition</subject><subject>Particle mass</subject><subject>Particulate matter</subject><subject>Radial distribution</subject><subject>Real time</subject><subject>real-time monitoring</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>Time constant</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UU1LxDAQLaKgrv4A8RLw3DVp2qY5yrp-4aq4Ct7KpJ1KpJvUJLvgb_JPmrriYZhheO_NG16SnDA6ZYzK87vl_GGa0YxOMykLWdKd5IAVRZUykVe748xpmnPxtp8cev9BKZOiEAfJ9yVusLfDCk0gtiO3JqBr9bsOELAlMxig0UFvkCzReOtIF-sZoU9f9ArJwhodrNPmfSQv1ypd6MZZQ8C05AGM9Q30SJ7ABd2s-6hJFhDiCU-0IU-xWwM9WcJq6EeR6EY3-Htkoc24mZuNjoKjv6Nkr4Pe4_FfnySvV_OX2U16_3h9O7u4T5tM8pAqaFmpVMMldpxh24lcKRRAC4lFVaKoWoqsylEVILOOK9FAKVWWl53i2Co-Sc62uoOzn2v0of6waxd9-jrLc0YZpZWMKLZFxX-9d9jVg9MrcF81o_WYST1mUo-Z1H-ZRM7plqMR8R8vqRRZkfMfEu-M6g</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Back, Doosan</creator><creator>Theisen, Daniel</creator><creator>Seo, Weeseong</creator><creator>Tsai, Candace Su-Jung</creator><creator>Janes, David B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9153-9578</orcidid><orcidid>https://orcid.org/0000-0003-1229-0538</orcidid><orcidid>https://orcid.org/0000-0002-1482-7485</orcidid></search><sort><creationdate>20201001</creationdate><title>Development of Interdigitated Capacitive Sensor for Real-Time Monitoring of Sub-Micron and Nanoscale Particulate Matters in Personal Sampling Device for Mining Environment</title><author>Back, Doosan ; Theisen, Daniel ; Seo, Weeseong ; Tsai, Candace Su-Jung ; Janes, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bad16bbc39ef31edf74bbe7a059e586e78d0e184eb5a92f3b7ca69b246fb3edb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomerates</topic><topic>Air flow</topic><topic>Air sampling</topic><topic>Airborne sensing</topic><topic>Capacitance</topic><topic>capacitive sensor</topic><topic>Capacitive sensors</topic><topic>Delay time</topic><topic>Dust control</topic><topic>Environmental monitoring</topic><topic>Gravimetry</topic><topic>microheater</topic><topic>Microparticles</topic><topic>Mining industry</topic><topic>Monitoring</topic><topic>Nanoparticles</topic><topic>Nanoscale devices</topic><topic>Particle deposition</topic><topic>Particle mass</topic><topic>Particulate matter</topic><topic>Radial distribution</topic><topic>Real time</topic><topic>real-time monitoring</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>Time constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Back, Doosan</creatorcontrib><creatorcontrib>Theisen, Daniel</creatorcontrib><creatorcontrib>Seo, Weeseong</creatorcontrib><creatorcontrib>Tsai, Candace Su-Jung</creatorcontrib><creatorcontrib>Janes, David B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Back, Doosan</au><au>Theisen, Daniel</au><au>Seo, Weeseong</au><au>Tsai, Candace Su-Jung</au><au>Janes, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Interdigitated Capacitive Sensor for Real-Time Monitoring of Sub-Micron and Nanoscale Particulate Matters in Personal Sampling Device for Mining Environment</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>20</volume><issue>19</issue><spage>11588</spage><epage>11597</epage><pages>11588-11597</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[While current personal monitoring devices for mining industry are optimized for monitoring microscale particles, a higher resolution technique is required to detect sub-micron and nanoscale particulate matters (PM) due to smaller volume and mass of the particles. In this work, an interdigitated capacitive sensor is designed for monitoring sub-micron and nanoscale particle concentration in real-time for mining environment and other applicable environments. The 2 mm <inline-formula> <tex-math notation="LaTeX">\times12 </tex-math></inline-formula> mm disposable sensor chip fits generic air sampling cassette housing. The re-usable readout board uses resistance-capacitance (RC) delay time constant for monitoring capacitance shift and data is recorded in real-time. The sensor showed clear response with respect to a commonly used test dust, and positive capacitance shift is observed after test. Among the collected particles, about 77 % are sub-micron and most of microparticles are agglomerates of sub-micron particles. A simulation study showed that our sensor response is in a region that is proportional to the particle volume collected on sensor. A comparison with gravimetric method showed that less than 1/1000 of collected particle mass on the sampler is responsible for sensor response due to radial distribution of particle deposition and sensor location. The sensor response is converted into a standard airborne mass particle concentration (g/<inline-formula> <tex-math notation="LaTeX">\text{m}^{3} </tex-math></inline-formula>) to demonstrate a continuous monitoring of particle concentration. An incorporated microheater improved stable capacitive sensor reading under air flow and various humidity.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.2995960</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9153-9578</orcidid><orcidid>https://orcid.org/0000-0003-1229-0538</orcidid><orcidid>https://orcid.org/0000-0002-1482-7485</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2020-10, Vol.20 (19), p.11588-11597 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9097254 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomerates Air flow Air sampling Airborne sensing Capacitance capacitive sensor Capacitive sensors Delay time Dust control Environmental monitoring Gravimetry microheater Microparticles Mining industry Monitoring Nanoparticles Nanoscale devices Particle deposition Particle mass Particulate matter Radial distribution Real time real-time monitoring Real-time systems Sensors Time constant |
title | Development of Interdigitated Capacitive Sensor for Real-Time Monitoring of Sub-Micron and Nanoscale Particulate Matters in Personal Sampling Device for Mining Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Interdigitated%20Capacitive%20Sensor%20for%20Real-Time%20Monitoring%20of%20Sub-Micron%20and%20Nanoscale%20Particulate%20Matters%20in%20Personal%20Sampling%20Device%20for%20Mining%20Environment&rft.jtitle=IEEE%20sensors%20journal&rft.au=Back,%20Doosan&rft.date=2020-10-01&rft.volume=20&rft.issue=19&rft.spage=11588&rft.epage=11597&rft.pages=11588-11597&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.2995960&rft_dat=%3Cproquest_RIE%3E2441010089%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441010089&rft_id=info:pmid/&rft_ieee_id=9097254&rfr_iscdi=true |