Development and Verification Test of the 6.6-kV 200-kVA Transformerless SDBC-Based STATCOM Using SiC-MOSFET Modules
This article discusses development and verification test results of the 6.6-kV 200-kVA transformerless static synchronous compensator (STATCOM). This STATCOM is characterized by the use of a modular multilevel single-delta bridge-cell (SDBC) converter and silicon carbide metal-oxide-semiconductor fi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2020-12, Vol.35 (12), p.13687-13696 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13696 |
---|---|
container_issue | 12 |
container_start_page | 13687 |
container_title | IEEE transactions on power electronics |
container_volume | 35 |
creator | Maharjan, Laxman Tajyuta, Toshihisa Maruyama, Koji Suzuki, Akio Toba, Akio |
description | This article discusses development and verification test results of the 6.6-kV 200-kVA transformerless static synchronous compensator (STATCOM). This STATCOM is characterized by the use of a modular multilevel single-delta bridge-cell (SDBC) converter and silicon carbide metal-oxide-semiconductor field-effect transistor (MOSFET) modules. The article discusses a control method for the 6.6-kV system with focus on dc-capacitor voltage control. The voltage control presented in this article is different from the ones presented earlier. It consists of intercluster balancing control and intracluster balancing control. The former, also known as cluster balancing control, eliminates the requirement of the separate overall dc-voltage control present in conventional methods, whereas the latter, also known as individual balancing control, is replaced with a new technique based on the control of a dead time of each bridge cell. The article makes a detailed description of the latter. Experimental results obtained from the 6.6-kV 200-kVA verification test equipment validate the effectiveness of the control method. Moreover, successful test results confirm the efficacy of the system for grid-voltage regulation and load compensation. |
doi_str_mv | 10.1109/TPEL.2020.2995159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9096582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9096582</ieee_id><sourcerecordid>2431701598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cbf859ba5f1886bf25956e3b4d46750e5e59a108ebc8bcc278ef5079955a59183</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhjdGE2v1Bxgvm3gGZ4GF3WNL60fSpibQXskCs0pt2bpLTfz3Qtp4eg_zvDOZh5B7Bj5jIJ_y9_nCDyAAP5CSMy4vyIjJiHnAILkkIxCCe0LK8JrcOLcFYBEHNiJuhj-4M4c9th1VbU03aBvdVKprTEtzdB01mnafSGM_9r42NADoY0Jzq1qnjd2j3aFzNJtNU2-qHNY0yyd5ulrStWvaD5o1qbdcZc_znC5NfezhW3Kl1c7h3TnHZN1P01dvsXp5SycLrwq57Lyq1ILLUnHNhIhLHXDJYwzLqI7ihANy5FIxEFhWoqyqIBGoOST9-1xxyUQ4Jo-nvQdrvo_9K8XWHG3bnyyCKGQJ9JoGip2oyhrnLOriYJu9sr8Fg2JwWwxui8FtcXbbdx5OnQYR_3kJMuYiCP8ABxNyaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431701598</pqid></control><display><type>article</type><title>Development and Verification Test of the 6.6-kV 200-kVA Transformerless SDBC-Based STATCOM Using SiC-MOSFET Modules</title><source>IEEE Electronic Library (IEL)</source><creator>Maharjan, Laxman ; Tajyuta, Toshihisa ; Maruyama, Koji ; Suzuki, Akio ; Toba, Akio</creator><creatorcontrib>Maharjan, Laxman ; Tajyuta, Toshihisa ; Maruyama, Koji ; Suzuki, Akio ; Toba, Akio</creatorcontrib><description>This article discusses development and verification test results of the 6.6-kV 200-kVA transformerless static synchronous compensator (STATCOM). This STATCOM is characterized by the use of a modular multilevel single-delta bridge-cell (SDBC) converter and silicon carbide metal-oxide-semiconductor field-effect transistor (MOSFET) modules. The article discusses a control method for the 6.6-kV system with focus on dc-capacitor voltage control. The voltage control presented in this article is different from the ones presented earlier. It consists of intercluster balancing control and intracluster balancing control. The former, also known as cluster balancing control, eliminates the requirement of the separate overall dc-voltage control present in conventional methods, whereas the latter, also known as individual balancing control, is replaced with a new technique based on the control of a dead time of each bridge cell. The article makes a detailed description of the latter. Experimental results obtained from the 6.6-kV 200-kVA verification test equipment validate the effectiveness of the control method. Moreover, successful test results confirm the efficacy of the system for grid-voltage regulation and load compensation.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.2995159</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic voltage control ; Balancing ; Bridge circuits ; Capacitors ; Control equipment ; Control methods ; Control systems ; Converters ; DC-capacitor voltage control ; Electric potential ; Field effect transistors ; grid-voltage regulation ; load compensation ; Logic gates ; modular multilevel single-delta bridge-cell (SDBC) converter ; Modules ; MOSFETs ; Semiconductor devices ; Silicon carbide ; static synchronous compensator (STATCOM) ; Static synchronous compensators ; Test equipment ; Verification ; Voltage</subject><ispartof>IEEE transactions on power electronics, 2020-12, Vol.35 (12), p.13687-13696</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-cbf859ba5f1886bf25956e3b4d46750e5e59a108ebc8bcc278ef5079955a59183</citedby><cites>FETCH-LOGICAL-c359t-cbf859ba5f1886bf25956e3b4d46750e5e59a108ebc8bcc278ef5079955a59183</cites><orcidid>0000-0002-7201-9830 ; 0000-0002-1749-5973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9096582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9096582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maharjan, Laxman</creatorcontrib><creatorcontrib>Tajyuta, Toshihisa</creatorcontrib><creatorcontrib>Maruyama, Koji</creatorcontrib><creatorcontrib>Suzuki, Akio</creatorcontrib><creatorcontrib>Toba, Akio</creatorcontrib><title>Development and Verification Test of the 6.6-kV 200-kVA Transformerless SDBC-Based STATCOM Using SiC-MOSFET Modules</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This article discusses development and verification test results of the 6.6-kV 200-kVA transformerless static synchronous compensator (STATCOM). This STATCOM is characterized by the use of a modular multilevel single-delta bridge-cell (SDBC) converter and silicon carbide metal-oxide-semiconductor field-effect transistor (MOSFET) modules. The article discusses a control method for the 6.6-kV system with focus on dc-capacitor voltage control. The voltage control presented in this article is different from the ones presented earlier. It consists of intercluster balancing control and intracluster balancing control. The former, also known as cluster balancing control, eliminates the requirement of the separate overall dc-voltage control present in conventional methods, whereas the latter, also known as individual balancing control, is replaced with a new technique based on the control of a dead time of each bridge cell. The article makes a detailed description of the latter. Experimental results obtained from the 6.6-kV 200-kVA verification test equipment validate the effectiveness of the control method. Moreover, successful test results confirm the efficacy of the system for grid-voltage regulation and load compensation.</description><subject>Automatic voltage control</subject><subject>Balancing</subject><subject>Bridge circuits</subject><subject>Capacitors</subject><subject>Control equipment</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Converters</subject><subject>DC-capacitor voltage control</subject><subject>Electric potential</subject><subject>Field effect transistors</subject><subject>grid-voltage regulation</subject><subject>load compensation</subject><subject>Logic gates</subject><subject>modular multilevel single-delta bridge-cell (SDBC) converter</subject><subject>Modules</subject><subject>MOSFETs</subject><subject>Semiconductor devices</subject><subject>Silicon carbide</subject><subject>static synchronous compensator (STATCOM)</subject><subject>Static synchronous compensators</subject><subject>Test equipment</subject><subject>Verification</subject><subject>Voltage</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Pg0AQhjdGE2v1Bxgvm3gGZ4GF3WNL60fSpibQXskCs0pt2bpLTfz3Qtp4eg_zvDOZh5B7Bj5jIJ_y9_nCDyAAP5CSMy4vyIjJiHnAILkkIxCCe0LK8JrcOLcFYBEHNiJuhj-4M4c9th1VbU03aBvdVKprTEtzdB01mnafSGM_9r42NADoY0Jzq1qnjd2j3aFzNJtNU2-qHNY0yyd5ulrStWvaD5o1qbdcZc_znC5NfezhW3Kl1c7h3TnHZN1P01dvsXp5SycLrwq57Lyq1ILLUnHNhIhLHXDJYwzLqI7ihANy5FIxEFhWoqyqIBGoOST9-1xxyUQ4Jo-nvQdrvo_9K8XWHG3bnyyCKGQJ9JoGip2oyhrnLOriYJu9sr8Fg2JwWwxui8FtcXbbdx5OnQYR_3kJMuYiCP8ABxNyaA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Maharjan, Laxman</creator><creator>Tajyuta, Toshihisa</creator><creator>Maruyama, Koji</creator><creator>Suzuki, Akio</creator><creator>Toba, Akio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7201-9830</orcidid><orcidid>https://orcid.org/0000-0002-1749-5973</orcidid></search><sort><creationdate>20201201</creationdate><title>Development and Verification Test of the 6.6-kV 200-kVA Transformerless SDBC-Based STATCOM Using SiC-MOSFET Modules</title><author>Maharjan, Laxman ; Tajyuta, Toshihisa ; Maruyama, Koji ; Suzuki, Akio ; Toba, Akio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cbf859ba5f1886bf25956e3b4d46750e5e59a108ebc8bcc278ef5079955a59183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic voltage control</topic><topic>Balancing</topic><topic>Bridge circuits</topic><topic>Capacitors</topic><topic>Control equipment</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Converters</topic><topic>DC-capacitor voltage control</topic><topic>Electric potential</topic><topic>Field effect transistors</topic><topic>grid-voltage regulation</topic><topic>load compensation</topic><topic>Logic gates</topic><topic>modular multilevel single-delta bridge-cell (SDBC) converter</topic><topic>Modules</topic><topic>MOSFETs</topic><topic>Semiconductor devices</topic><topic>Silicon carbide</topic><topic>static synchronous compensator (STATCOM)</topic><topic>Static synchronous compensators</topic><topic>Test equipment</topic><topic>Verification</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maharjan, Laxman</creatorcontrib><creatorcontrib>Tajyuta, Toshihisa</creatorcontrib><creatorcontrib>Maruyama, Koji</creatorcontrib><creatorcontrib>Suzuki, Akio</creatorcontrib><creatorcontrib>Toba, Akio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maharjan, Laxman</au><au>Tajyuta, Toshihisa</au><au>Maruyama, Koji</au><au>Suzuki, Akio</au><au>Toba, Akio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Verification Test of the 6.6-kV 200-kVA Transformerless SDBC-Based STATCOM Using SiC-MOSFET Modules</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>35</volume><issue>12</issue><spage>13687</spage><epage>13696</epage><pages>13687-13696</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This article discusses development and verification test results of the 6.6-kV 200-kVA transformerless static synchronous compensator (STATCOM). This STATCOM is characterized by the use of a modular multilevel single-delta bridge-cell (SDBC) converter and silicon carbide metal-oxide-semiconductor field-effect transistor (MOSFET) modules. The article discusses a control method for the 6.6-kV system with focus on dc-capacitor voltage control. The voltage control presented in this article is different from the ones presented earlier. It consists of intercluster balancing control and intracluster balancing control. The former, also known as cluster balancing control, eliminates the requirement of the separate overall dc-voltage control present in conventional methods, whereas the latter, also known as individual balancing control, is replaced with a new technique based on the control of a dead time of each bridge cell. The article makes a detailed description of the latter. Experimental results obtained from the 6.6-kV 200-kVA verification test equipment validate the effectiveness of the control method. Moreover, successful test results confirm the efficacy of the system for grid-voltage regulation and load compensation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.2995159</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7201-9830</orcidid><orcidid>https://orcid.org/0000-0002-1749-5973</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2020-12, Vol.35 (12), p.13687-13696 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9096582 |
source | IEEE Electronic Library (IEL) |
subjects | Automatic voltage control Balancing Bridge circuits Capacitors Control equipment Control methods Control systems Converters DC-capacitor voltage control Electric potential Field effect transistors grid-voltage regulation load compensation Logic gates modular multilevel single-delta bridge-cell (SDBC) converter Modules MOSFETs Semiconductor devices Silicon carbide static synchronous compensator (STATCOM) Static synchronous compensators Test equipment Verification Voltage |
title | Development and Verification Test of the 6.6-kV 200-kVA Transformerless SDBC-Based STATCOM Using SiC-MOSFET Modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Verification%20Test%20of%20the%206.6-kV%20200-kVA%20Transformerless%20SDBC-Based%20STATCOM%20Using%20SiC-MOSFET%20Modules&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Maharjan,%20Laxman&rft.date=2020-12-01&rft.volume=35&rft.issue=12&rft.spage=13687&rft.epage=13696&rft.pages=13687-13696&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.2995159&rft_dat=%3Cproquest_RIE%3E2431701598%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431701598&rft_id=info:pmid/&rft_ieee_id=9096582&rfr_iscdi=true |