Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation
A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm....
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2020-09, Vol.38 (17), p.4722-4729 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4729 |
---|---|
container_issue | 17 |
container_start_page | 4722 |
container_title | Journal of lightwave technology |
container_volume | 38 |
creator | Matsumoto, Masayuki |
description | A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm. Required carrier power added to the signal is examined and it is shown that carrier power larger by 2 to 3 dB than that needed in the Kramers-Kronig receiver. The carrier can be located inside the signal spectrum, lifting the condition that the signal needs to be single-sideband with tightly confined spectrum. The noise immunity in solving the TIE, which will be an issue in practical usage of the scheme, is also discussed. |
doi_str_mv | 10.1109/JLT.2020.2995640 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9096366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9096366</ieee_id><sourcerecordid>2436406129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-93f23dcee7405bb7f4a050900dbe3f7aba19a3f422614ceb20cb1688b1fe8d563</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKt3wcuCR9k6-djs5qilflGoaHtesulEV9pNTbKI_97Uil49zcvwPAPzEnJKYUQpqMuH6XzEgMGIKVVIAXtkQIuiyhmjfJ8MoOQ8r0omDslRCG8AVIiqHJDFbBNbo1fZc_vSpfH4qgNmT2hcF6LvTWxdl12n3TJLYY7rjfMJm3vdhRRj7mx-30XsQhs_s8l7r7fGMTmwehXw5GcOyeJmMh_f5dPZ7f34apobXpQxV9wyvjSIpYCiaUorNBSgAJYNclvqRlOluRWMSSoMNgxMQ2VVNdRitSwkH5Lz3d2Nd-89hli_ud6nP0LNBE8tSMpUomBHGe9C8GjrjW_X2n_WFOpteXUqr96WV_-Ul5Rqp3xg42wwLXYGfzUAKCRLl1lKVI7b-P312PVdTOrF_9VEn-3oFvGPUqAkl5J_AZZ3jCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436406129</pqid></control><display><type>article</type><title>Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation</title><source>IEEE Electronic Library (IEL)</source><creator>Matsumoto, Masayuki</creator><creatorcontrib>Matsumoto, Masayuki</creatorcontrib><description>A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm. Required carrier power added to the signal is examined and it is shown that carrier power larger by 2 to 3 dB than that needed in the Kramers-Kronig receiver. The carrier can be located inside the signal spectrum, lifting the condition that the signal needs to be single-sideband with tightly confined spectrum. The noise immunity in solving the TIE, which will be an issue in practical usage of the scheme, is also discussed.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.2995640</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Direct detection ; Direct detection receivers ; Engineering ; Engineering, Electrical & Electronic ; Fast Fourier transformations ; Fourier transforms ; Optical communication ; Optical fiber communication ; Optical fiber dispersion ; Optical fibers ; Optical receivers ; Optics ; Phase retrieval ; Physical Sciences ; Reconstruction ; Science & Technology ; Single sideband transmission ; Technology ; Telecommunications ; transport-of-intensity equation</subject><ispartof>Journal of lightwave technology, 2020-09, Vol.38 (17), p.4722-4729</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000562293200016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c357t-93f23dcee7405bb7f4a050900dbe3f7aba19a3f422614ceb20cb1688b1fe8d563</citedby><cites>FETCH-LOGICAL-c357t-93f23dcee7405bb7f4a050900dbe3f7aba19a3f422614ceb20cb1688b1fe8d563</cites><orcidid>0000-0001-7846-6626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9096366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9096366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matsumoto, Masayuki</creatorcontrib><title>Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><addtitle>J LIGHTWAVE TECHNOL</addtitle><description>A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm. Required carrier power added to the signal is examined and it is shown that carrier power larger by 2 to 3 dB than that needed in the Kramers-Kronig receiver. The carrier can be located inside the signal spectrum, lifting the condition that the signal needs to be single-sideband with tightly confined spectrum. The noise immunity in solving the TIE, which will be an issue in practical usage of the scheme, is also discussed.</description><subject>Algorithms</subject><subject>Direct detection</subject><subject>Direct detection receivers</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Optical communication</subject><subject>Optical fiber communication</subject><subject>Optical fiber dispersion</subject><subject>Optical fibers</subject><subject>Optical receivers</subject><subject>Optics</subject><subject>Phase retrieval</subject><subject>Physical Sciences</subject><subject>Reconstruction</subject><subject>Science & Technology</subject><subject>Single sideband transmission</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>transport-of-intensity equation</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkE1LAzEQhoMoWKt3wcuCR9k6-djs5qilflGoaHtesulEV9pNTbKI_97Uil49zcvwPAPzEnJKYUQpqMuH6XzEgMGIKVVIAXtkQIuiyhmjfJ8MoOQ8r0omDslRCG8AVIiqHJDFbBNbo1fZc_vSpfH4qgNmT2hcF6LvTWxdl12n3TJLYY7rjfMJm3vdhRRj7mx-30XsQhs_s8l7r7fGMTmwehXw5GcOyeJmMh_f5dPZ7f34apobXpQxV9wyvjSIpYCiaUorNBSgAJYNclvqRlOluRWMSSoMNgxMQ2VVNdRitSwkH5Lz3d2Nd-89hli_ud6nP0LNBE8tSMpUomBHGe9C8GjrjW_X2n_WFOpteXUqr96WV_-Ul5Rqp3xg42wwLXYGfzUAKCRLl1lKVI7b-P312PVdTOrF_9VEn-3oFvGPUqAkl5J_AZZ3jCQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Matsumoto, Masayuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7846-6626</orcidid></search><sort><creationdate>20200901</creationdate><title>Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation</title><author>Matsumoto, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-93f23dcee7405bb7f4a050900dbe3f7aba19a3f422614ceb20cb1688b1fe8d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Direct detection</topic><topic>Direct detection receivers</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Optical communication</topic><topic>Optical fiber communication</topic><topic>Optical fiber dispersion</topic><topic>Optical fibers</topic><topic>Optical receivers</topic><topic>Optics</topic><topic>Phase retrieval</topic><topic>Physical Sciences</topic><topic>Reconstruction</topic><topic>Science & Technology</topic><topic>Single sideband transmission</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>transport-of-intensity equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Masayuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsumoto, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><stitle>J LIGHTWAVE TECHNOL</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>38</volume><issue>17</issue><spage>4722</spage><epage>4729</epage><pages>4722-4729</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm. Required carrier power added to the signal is examined and it is shown that carrier power larger by 2 to 3 dB than that needed in the Kramers-Kronig receiver. The carrier can be located inside the signal spectrum, lifting the condition that the signal needs to be single-sideband with tightly confined spectrum. The noise immunity in solving the TIE, which will be an issue in practical usage of the scheme, is also discussed.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.2995640</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7846-6626</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2020-09, Vol.38 (17), p.4722-4729 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_9096366 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Direct detection Direct detection receivers Engineering Engineering, Electrical & Electronic Fast Fourier transformations Fourier transforms Optical communication Optical fiber communication Optical fiber dispersion Optical fibers Optical receivers Optics Phase retrieval Physical Sciences Reconstruction Science & Technology Single sideband transmission Technology Telecommunications transport-of-intensity equation |
title | Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Signal%20Phase%20Reconstruction%20Based%20on%20Temporal%20Transport-of-Intensity%20Equation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Matsumoto,%20Masayuki&rft.date=2020-09-01&rft.volume=38&rft.issue=17&rft.spage=4722&rft.epage=4729&rft.pages=4722-4729&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.2995640&rft_dat=%3Cproquest_RIE%3E2436406129%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436406129&rft_id=info:pmid/&rft_ieee_id=9096366&rfr_iscdi=true |