Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation

A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2020-09, Vol.38 (17), p.4722-4729
1. Verfasser: Matsumoto, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4729
container_issue 17
container_start_page 4722
container_title Journal of lightwave technology
container_volume 38
creator Matsumoto, Masayuki
description A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm. Required carrier power added to the signal is examined and it is shown that carrier power larger by 2 to 3 dB than that needed in the Kramers-Kronig receiver. The carrier can be located inside the signal spectrum, lifting the condition that the signal needs to be single-sideband with tightly confined spectrum. The noise immunity in solving the TIE, which will be an issue in practical usage of the scheme, is also discussed.
doi_str_mv 10.1109/JLT.2020.2995640
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9096366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9096366</ieee_id><sourcerecordid>2436406129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-93f23dcee7405bb7f4a050900dbe3f7aba19a3f422614ceb20cb1688b1fe8d563</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKt3wcuCR9k6-djs5qilflGoaHtesulEV9pNTbKI_97Uil49zcvwPAPzEnJKYUQpqMuH6XzEgMGIKVVIAXtkQIuiyhmjfJ8MoOQ8r0omDslRCG8AVIiqHJDFbBNbo1fZc_vSpfH4qgNmT2hcF6LvTWxdl12n3TJLYY7rjfMJm3vdhRRj7mx-30XsQhs_s8l7r7fGMTmwehXw5GcOyeJmMh_f5dPZ7f34apobXpQxV9wyvjSIpYCiaUorNBSgAJYNclvqRlOluRWMSSoMNgxMQ2VVNdRitSwkH5Lz3d2Nd-89hli_ud6nP0LNBE8tSMpUomBHGe9C8GjrjW_X2n_WFOpteXUqr96WV_-Ul5Rqp3xg42wwLXYGfzUAKCRLl1lKVI7b-P312PVdTOrF_9VEn-3oFvGPUqAkl5J_AZZ3jCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436406129</pqid></control><display><type>article</type><title>Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation</title><source>IEEE Electronic Library (IEL)</source><creator>Matsumoto, Masayuki</creator><creatorcontrib>Matsumoto, Masayuki</creatorcontrib><description>A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm. Required carrier power added to the signal is examined and it is shown that carrier power larger by 2 to 3 dB than that needed in the Kramers-Kronig receiver. The carrier can be located inside the signal spectrum, lifting the condition that the signal needs to be single-sideband with tightly confined spectrum. The noise immunity in solving the TIE, which will be an issue in practical usage of the scheme, is also discussed.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.2995640</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Direct detection ; Direct detection receivers ; Engineering ; Engineering, Electrical &amp; Electronic ; Fast Fourier transformations ; Fourier transforms ; Optical communication ; Optical fiber communication ; Optical fiber dispersion ; Optical fibers ; Optical receivers ; Optics ; Phase retrieval ; Physical Sciences ; Reconstruction ; Science &amp; Technology ; Single sideband transmission ; Technology ; Telecommunications ; transport-of-intensity equation</subject><ispartof>Journal of lightwave technology, 2020-09, Vol.38 (17), p.4722-4729</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000562293200016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c357t-93f23dcee7405bb7f4a050900dbe3f7aba19a3f422614ceb20cb1688b1fe8d563</citedby><cites>FETCH-LOGICAL-c357t-93f23dcee7405bb7f4a050900dbe3f7aba19a3f422614ceb20cb1688b1fe8d563</cites><orcidid>0000-0001-7846-6626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9096366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9096366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matsumoto, Masayuki</creatorcontrib><title>Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><addtitle>J LIGHTWAVE TECHNOL</addtitle><description>A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm. Required carrier power added to the signal is examined and it is shown that carrier power larger by 2 to 3 dB than that needed in the Kramers-Kronig receiver. The carrier can be located inside the signal spectrum, lifting the condition that the signal needs to be single-sideband with tightly confined spectrum. The noise immunity in solving the TIE, which will be an issue in practical usage of the scheme, is also discussed.</description><subject>Algorithms</subject><subject>Direct detection</subject><subject>Direct detection receivers</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Optical communication</subject><subject>Optical fiber communication</subject><subject>Optical fiber dispersion</subject><subject>Optical fibers</subject><subject>Optical receivers</subject><subject>Optics</subject><subject>Phase retrieval</subject><subject>Physical Sciences</subject><subject>Reconstruction</subject><subject>Science &amp; Technology</subject><subject>Single sideband transmission</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>transport-of-intensity equation</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkE1LAzEQhoMoWKt3wcuCR9k6-djs5qilflGoaHtesulEV9pNTbKI_97Uil49zcvwPAPzEnJKYUQpqMuH6XzEgMGIKVVIAXtkQIuiyhmjfJ8MoOQ8r0omDslRCG8AVIiqHJDFbBNbo1fZc_vSpfH4qgNmT2hcF6LvTWxdl12n3TJLYY7rjfMJm3vdhRRj7mx-30XsQhs_s8l7r7fGMTmwehXw5GcOyeJmMh_f5dPZ7f34apobXpQxV9wyvjSIpYCiaUorNBSgAJYNclvqRlOluRWMSSoMNgxMQ2VVNdRitSwkH5Lz3d2Nd-89hli_ud6nP0LNBE8tSMpUomBHGe9C8GjrjW_X2n_WFOpteXUqr96WV_-Ul5Rqp3xg42wwLXYGfzUAKCRLl1lKVI7b-P312PVdTOrF_9VEn-3oFvGPUqAkl5J_AZZ3jCQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Matsumoto, Masayuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7846-6626</orcidid></search><sort><creationdate>20200901</creationdate><title>Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation</title><author>Matsumoto, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-93f23dcee7405bb7f4a050900dbe3f7aba19a3f422614ceb20cb1688b1fe8d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Direct detection</topic><topic>Direct detection receivers</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Optical communication</topic><topic>Optical fiber communication</topic><topic>Optical fiber dispersion</topic><topic>Optical fibers</topic><topic>Optical receivers</topic><topic>Optics</topic><topic>Phase retrieval</topic><topic>Physical Sciences</topic><topic>Reconstruction</topic><topic>Science &amp; Technology</topic><topic>Single sideband transmission</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>transport-of-intensity equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Masayuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsumoto, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><stitle>J LIGHTWAVE TECHNOL</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>38</volume><issue>17</issue><spage>4722</spage><epage>4729</epage><pages>4722-4729</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A non-iterative reconstruction scheme of phase modulated optical signals using dispersive media in direct-detection receiver is described. The phase retrieval is achieved by solving the temporal transport-of-intensity equation (TIE). The TIE is solved by the use of Fast Fourier Transform algorithm. Required carrier power added to the signal is examined and it is shown that carrier power larger by 2 to 3 dB than that needed in the Kramers-Kronig receiver. The carrier can be located inside the signal spectrum, lifting the condition that the signal needs to be single-sideband with tightly confined spectrum. The noise immunity in solving the TIE, which will be an issue in practical usage of the scheme, is also discussed.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.2995640</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7846-6626</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2020-09, Vol.38 (17), p.4722-4729
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_9096366
source IEEE Electronic Library (IEL)
subjects Algorithms
Direct detection
Direct detection receivers
Engineering
Engineering, Electrical & Electronic
Fast Fourier transformations
Fourier transforms
Optical communication
Optical fiber communication
Optical fiber dispersion
Optical fibers
Optical receivers
Optics
Phase retrieval
Physical Sciences
Reconstruction
Science & Technology
Single sideband transmission
Technology
Telecommunications
transport-of-intensity equation
title Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Signal%20Phase%20Reconstruction%20Based%20on%20Temporal%20Transport-of-Intensity%20Equation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Matsumoto,%20Masayuki&rft.date=2020-09-01&rft.volume=38&rft.issue=17&rft.spage=4722&rft.epage=4729&rft.pages=4722-4729&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.2995640&rft_dat=%3Cproquest_RIE%3E2436406129%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436406129&rft_id=info:pmid/&rft_ieee_id=9096366&rfr_iscdi=true