A Single-Chip Bidirectional Neural Interface With High-Voltage Stimulation and Adaptive Artifact Cancellation in Standard CMOS

A single-chip, bidirectional brain-computer interface (BBCI) enables neuromodulation through simultaneous neural recording and stimulation. This article presents a prototype BBCI application-specified integrated circuit (ASIC) consisting of a 64-channel time-multiplexed recording front-end, an area-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2020-07, Vol.55 (7), p.1749-1761
Hauptverfasser: Uehlin, John P., Smith, William Anthony, Pamula, Venkata Rajesh, Pepin, Eric P., Perlmutter, Steve, Sathe, Visvesh, Rudell, Jacques Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1761
container_issue 7
container_start_page 1749
container_title IEEE journal of solid-state circuits
container_volume 55
creator Uehlin, John P.
Smith, William Anthony
Pamula, Venkata Rajesh
Pepin, Eric P.
Perlmutter, Steve
Sathe, Visvesh
Rudell, Jacques Christophe
description A single-chip, bidirectional brain-computer interface (BBCI) enables neuromodulation through simultaneous neural recording and stimulation. This article presents a prototype BBCI application-specified integrated circuit (ASIC) consisting of a 64-channel time-multiplexed recording front-end, an area-optimized four-channel high-voltage compliant stimulator, and electronics to support the concurrent multi-channel stimulus artifact cancellation. Stimulator power generation is integrated on a chip, providing ±11-V compliance from low-voltage supplies with a resonant charge pump. High-frequency (~3 GHz) self-resonant clocking is used to reduce the pumping capacitor area while suppressing the associated switching losses. A 32-tap least mean square (LMS)-based digital adaptive filter achieves 60-dB artifact suppression, enabling simultaneous neural stimulation and recording. The entire chip occupies 4 mm 2 in a 65-nm low power (LP) process and is powered by 2.5-/1.2-V supplies, dissipating 205~\mu \text{W} in recording and 142~\mu \text{W} in the stimulation and cancellation back-ends. The stimulation output drivers achieve 31% dc-dc efficiency at a maximum output power of 24 mW.
doi_str_mv 10.1109/JSSC.2020.2991524
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9094199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9094199</ieee_id><sourcerecordid>2418419706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-103e791c76534c0dca749dbeee1fb06d31ad99ec692bbce9f8a80631afe944063</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpduI8vAwR0KJCF-G1sxxn0rpKk-A4SGz4dhxasZoZ65zR-CJ0ScmMUsJvHvM8m_nEJzOfcxr67AhNaBgmHo2Dj2M0IYQmHvcJOUVnfb91I2MJnaCfFOe6WdfgZRvd4VtdagPK6raRNX6GwbiyaCyYSirA79pu8FyvN95bW1u5BpxbvRtqOQpYNiVOS9lZ_QU4NVY7x-JMNgrqA6IbZzhOmhJnT6v8HJ1Usu7h4lCn6PX-7iWbe8vVwyJLl54KEmY9SgKIOVVxFAZMkVLJmPGyAABaFSQqAypLzkFF3C8KBbxKZEIi91oBZ8x1U3S939uZ9nOA3optOxj3x174jCaM8viPontKmbbvDVSiM3onzbegRIwxizFmMcYsDjE752rvaHfNP88Jdzt58AthGnoG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418419706</pqid></control><display><type>article</type><title>A Single-Chip Bidirectional Neural Interface With High-Voltage Stimulation and Adaptive Artifact Cancellation in Standard CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Uehlin, John P. ; Smith, William Anthony ; Pamula, Venkata Rajesh ; Pepin, Eric P. ; Perlmutter, Steve ; Sathe, Visvesh ; Rudell, Jacques Christophe</creator><creatorcontrib>Uehlin, John P. ; Smith, William Anthony ; Pamula, Venkata Rajesh ; Pepin, Eric P. ; Perlmutter, Steve ; Sathe, Visvesh ; Rudell, Jacques Christophe</creatorcontrib><description><![CDATA[A single-chip, bidirectional brain-computer interface (BBCI) enables neuromodulation through simultaneous neural recording and stimulation. This article presents a prototype BBCI application-specified integrated circuit (ASIC) consisting of a 64-channel time-multiplexed recording front-end, an area-optimized four-channel high-voltage compliant stimulator, and electronics to support the concurrent multi-channel stimulus artifact cancellation. Stimulator power generation is integrated on a chip, providing ±11-V compliance from low-voltage supplies with a resonant charge pump. High-frequency (~3 GHz) self-resonant clocking is used to reduce the pumping capacitor area while suppressing the associated switching losses. A 32-tap least mean square (LMS)-based digital adaptive filter achieves 60-dB artifact suppression, enabling simultaneous neural stimulation and recording. The entire chip occupies 4 mm 2 in a 65-nm low power (LP) process and is powered by 2.5-/1.2-V supplies, dissipating <inline-formula> <tex-math notation="LaTeX">205~\mu \text{W} </tex-math></inline-formula> in recording and <inline-formula> <tex-math notation="LaTeX">142~\mu \text{W} </tex-math></inline-formula> in the stimulation and cancellation back-ends. The stimulation output drivers achieve 31% dc-dc efficiency at a maximum output power of 24 mW.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2020.2991524</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Artifact cancellation ; brain–computer interfaces ; Cancellation ; Capacitors ; Charge pumps ; CMOS ; Electric power generation ; electrical stimulation ; Electrical stimuli ; Electrodes ; High voltages ; Integrated circuits ; neural recording ; Recording ; Resonant frequency ; Stimulation ; Stimulators ; Switches ; time-division multiplexing ; Voltage control</subject><ispartof>IEEE journal of solid-state circuits, 2020-07, Vol.55 (7), p.1749-1761</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-103e791c76534c0dca749dbeee1fb06d31ad99ec692bbce9f8a80631afe944063</citedby><cites>FETCH-LOGICAL-c384t-103e791c76534c0dca749dbeee1fb06d31ad99ec692bbce9f8a80631afe944063</cites><orcidid>0000-0002-4647-0425 ; 0000-0001-7443-6884 ; 0000-0002-8531-2999 ; 0000-0002-4958-9712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9094199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9094199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Uehlin, John P.</creatorcontrib><creatorcontrib>Smith, William Anthony</creatorcontrib><creatorcontrib>Pamula, Venkata Rajesh</creatorcontrib><creatorcontrib>Pepin, Eric P.</creatorcontrib><creatorcontrib>Perlmutter, Steve</creatorcontrib><creatorcontrib>Sathe, Visvesh</creatorcontrib><creatorcontrib>Rudell, Jacques Christophe</creatorcontrib><title>A Single-Chip Bidirectional Neural Interface With High-Voltage Stimulation and Adaptive Artifact Cancellation in Standard CMOS</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[A single-chip, bidirectional brain-computer interface (BBCI) enables neuromodulation through simultaneous neural recording and stimulation. This article presents a prototype BBCI application-specified integrated circuit (ASIC) consisting of a 64-channel time-multiplexed recording front-end, an area-optimized four-channel high-voltage compliant stimulator, and electronics to support the concurrent multi-channel stimulus artifact cancellation. Stimulator power generation is integrated on a chip, providing ±11-V compliance from low-voltage supplies with a resonant charge pump. High-frequency (~3 GHz) self-resonant clocking is used to reduce the pumping capacitor area while suppressing the associated switching losses. A 32-tap least mean square (LMS)-based digital adaptive filter achieves 60-dB artifact suppression, enabling simultaneous neural stimulation and recording. The entire chip occupies 4 mm 2 in a 65-nm low power (LP) process and is powered by 2.5-/1.2-V supplies, dissipating <inline-formula> <tex-math notation="LaTeX">205~\mu \text{W} </tex-math></inline-formula> in recording and <inline-formula> <tex-math notation="LaTeX">142~\mu \text{W} </tex-math></inline-formula> in the stimulation and cancellation back-ends. The stimulation output drivers achieve 31% dc-dc efficiency at a maximum output power of 24 mW.]]></description><subject>Adaptive filters</subject><subject>Artifact cancellation</subject><subject>brain–computer interfaces</subject><subject>Cancellation</subject><subject>Capacitors</subject><subject>Charge pumps</subject><subject>CMOS</subject><subject>Electric power generation</subject><subject>electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Electrodes</subject><subject>High voltages</subject><subject>Integrated circuits</subject><subject>neural recording</subject><subject>Recording</subject><subject>Resonant frequency</subject><subject>Stimulation</subject><subject>Stimulators</subject><subject>Switches</subject><subject>time-division multiplexing</subject><subject>Voltage control</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpduI8vAwR0KJCF-G1sxxn0rpKk-A4SGz4dhxasZoZ65zR-CJ0ScmMUsJvHvM8m_nEJzOfcxr67AhNaBgmHo2Dj2M0IYQmHvcJOUVnfb91I2MJnaCfFOe6WdfgZRvd4VtdagPK6raRNX6GwbiyaCyYSirA79pu8FyvN95bW1u5BpxbvRtqOQpYNiVOS9lZ_QU4NVY7x-JMNgrqA6IbZzhOmhJnT6v8HJ1Usu7h4lCn6PX-7iWbe8vVwyJLl54KEmY9SgKIOVVxFAZMkVLJmPGyAABaFSQqAypLzkFF3C8KBbxKZEIi91oBZ8x1U3S939uZ9nOA3optOxj3x174jCaM8viPontKmbbvDVSiM3onzbegRIwxizFmMcYsDjE752rvaHfNP88Jdzt58AthGnoG</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Uehlin, John P.</creator><creator>Smith, William Anthony</creator><creator>Pamula, Venkata Rajesh</creator><creator>Pepin, Eric P.</creator><creator>Perlmutter, Steve</creator><creator>Sathe, Visvesh</creator><creator>Rudell, Jacques Christophe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4647-0425</orcidid><orcidid>https://orcid.org/0000-0001-7443-6884</orcidid><orcidid>https://orcid.org/0000-0002-8531-2999</orcidid><orcidid>https://orcid.org/0000-0002-4958-9712</orcidid></search><sort><creationdate>20200701</creationdate><title>A Single-Chip Bidirectional Neural Interface With High-Voltage Stimulation and Adaptive Artifact Cancellation in Standard CMOS</title><author>Uehlin, John P. ; Smith, William Anthony ; Pamula, Venkata Rajesh ; Pepin, Eric P. ; Perlmutter, Steve ; Sathe, Visvesh ; Rudell, Jacques Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-103e791c76534c0dca749dbeee1fb06d31ad99ec692bbce9f8a80631afe944063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive filters</topic><topic>Artifact cancellation</topic><topic>brain–computer interfaces</topic><topic>Cancellation</topic><topic>Capacitors</topic><topic>Charge pumps</topic><topic>CMOS</topic><topic>Electric power generation</topic><topic>electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Electrodes</topic><topic>High voltages</topic><topic>Integrated circuits</topic><topic>neural recording</topic><topic>Recording</topic><topic>Resonant frequency</topic><topic>Stimulation</topic><topic>Stimulators</topic><topic>Switches</topic><topic>time-division multiplexing</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uehlin, John P.</creatorcontrib><creatorcontrib>Smith, William Anthony</creatorcontrib><creatorcontrib>Pamula, Venkata Rajesh</creatorcontrib><creatorcontrib>Pepin, Eric P.</creatorcontrib><creatorcontrib>Perlmutter, Steve</creatorcontrib><creatorcontrib>Sathe, Visvesh</creatorcontrib><creatorcontrib>Rudell, Jacques Christophe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Uehlin, John P.</au><au>Smith, William Anthony</au><au>Pamula, Venkata Rajesh</au><au>Pepin, Eric P.</au><au>Perlmutter, Steve</au><au>Sathe, Visvesh</au><au>Rudell, Jacques Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Single-Chip Bidirectional Neural Interface With High-Voltage Stimulation and Adaptive Artifact Cancellation in Standard CMOS</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>55</volume><issue>7</issue><spage>1749</spage><epage>1761</epage><pages>1749-1761</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[A single-chip, bidirectional brain-computer interface (BBCI) enables neuromodulation through simultaneous neural recording and stimulation. This article presents a prototype BBCI application-specified integrated circuit (ASIC) consisting of a 64-channel time-multiplexed recording front-end, an area-optimized four-channel high-voltage compliant stimulator, and electronics to support the concurrent multi-channel stimulus artifact cancellation. Stimulator power generation is integrated on a chip, providing ±11-V compliance from low-voltage supplies with a resonant charge pump. High-frequency (~3 GHz) self-resonant clocking is used to reduce the pumping capacitor area while suppressing the associated switching losses. A 32-tap least mean square (LMS)-based digital adaptive filter achieves 60-dB artifact suppression, enabling simultaneous neural stimulation and recording. The entire chip occupies 4 mm 2 in a 65-nm low power (LP) process and is powered by 2.5-/1.2-V supplies, dissipating <inline-formula> <tex-math notation="LaTeX">205~\mu \text{W} </tex-math></inline-formula> in recording and <inline-formula> <tex-math notation="LaTeX">142~\mu \text{W} </tex-math></inline-formula> in the stimulation and cancellation back-ends. The stimulation output drivers achieve 31% dc-dc efficiency at a maximum output power of 24 mW.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2020.2991524</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4647-0425</orcidid><orcidid>https://orcid.org/0000-0001-7443-6884</orcidid><orcidid>https://orcid.org/0000-0002-8531-2999</orcidid><orcidid>https://orcid.org/0000-0002-4958-9712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2020-07, Vol.55 (7), p.1749-1761
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_9094199
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Artifact cancellation
brain–computer interfaces
Cancellation
Capacitors
Charge pumps
CMOS
Electric power generation
electrical stimulation
Electrical stimuli
Electrodes
High voltages
Integrated circuits
neural recording
Recording
Resonant frequency
Stimulation
Stimulators
Switches
time-division multiplexing
Voltage control
title A Single-Chip Bidirectional Neural Interface With High-Voltage Stimulation and Adaptive Artifact Cancellation in Standard CMOS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Single-Chip%20Bidirectional%20Neural%20Interface%20With%20High-Voltage%20Stimulation%20and%20Adaptive%20Artifact%20Cancellation%20in%20Standard%20CMOS&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Uehlin,%20John%20P.&rft.date=2020-07-01&rft.volume=55&rft.issue=7&rft.spage=1749&rft.epage=1761&rft.pages=1749-1761&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2020.2991524&rft_dat=%3Cproquest_RIE%3E2418419706%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418419706&rft_id=info:pmid/&rft_ieee_id=9094199&rfr_iscdi=true