Non-Line-of-Sight Location With Gauss Filtering Algorithm Based on a Model of Photon Flight

Recently, non-line-of-sight (NLOS) detection based on time of flight (TOF) has been investigated. In order to simulate the NLOS location of a hidden object, we derive the signal scattered by the object and build a model of photon flight based on photon scattering and propagation. To improve the auth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2020-06, Vol.12 (3), p.1-15
Hauptverfasser: Ren, Yu, Xie, Zongliang, Luo, Yihan, Xu, Shaoxiong, Ma, Haotong, Tan, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 3
container_start_page 1
container_title IEEE photonics journal
container_volume 12
creator Ren, Yu
Xie, Zongliang
Luo, Yihan
Xu, Shaoxiong
Ma, Haotong
Tan, Yi
description Recently, non-line-of-sight (NLOS) detection based on time of flight (TOF) has been investigated. In order to simulate the NLOS location of a hidden object, we derive the signal scattered by the object and build a model of photon flight based on photon scattering and propagation. To improve the authenticity of the model, the bidirectional reflectance distribution function (BRDF) is used to characterize the scattering process. The Gauss filter is proposed to extract the TOF of the scattering sources of interest without a priori information or manual judgment of the useful scattered signal by filtering the disturbance out of the histogram. The hidden object can then be located by TOF processing. Compared with previous work using a fitting algorithm, the Gauss filtering approach preserves more waveform information and presents improved positioning accuracy and robustness under the influence of noise, which is demonstrated in both simulation and experiment. It is possible to locate a NLOS object automatically through filtering identification of the object signal. The simplicity, high efficiency, and automation of this algorithm make it applicable for tracking a hidden moving object.
doi_str_mv 10.1109/JPHOT.2020.2994784
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9094044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9094044</ieee_id><doaj_id>oai_doaj_org_article_5c6fcd1f188d4708b45b127916b75287</doaj_id><sourcerecordid>2417428132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-98dfe1f3b82efa1c66addf308e0ad91c13b141b264dc623ba19ad14116064b463</originalsourceid><addsrcrecordid>eNo9UctOwzAQjBBIQOEH4GKJc4rXcRz7CIgWUHlIgDhwsBw_WlchBjs98Pe4tOppV7Mzs7uaojgDPAbA4vLh5e75bUwwwWMiBG043SuOQNCqxIw2-7u-rg-L45SWGDMBtTgqPp9CX858b8vgylc_XwxoFrQafOjRhx8WaKpWKaGJ7wYbfT9HV908xDz4QtcqWYMyT6HHYGyHgkMvizBkZNKtnU6KA6e6ZE-3dVS8T27fbu7K2fP0_uZqVmqK66EU3DgLrmo5sU6BZkwZ4yrMLVZGgIaqBQotYdRoRqpWgVAmI8Dyby1l1ai43_iaoJbyO_ovFX9lUF7-AyHOpYqD152VtWZOG3DAuaEN5i2tWyCNANY2NeFN9rrYeH3H8LOyaZDLsIp9Pl8SCg0lHCqSWWTD0jGkFK3bbQUs14HI_0DkOhC5DSSLzjcib63dCQQWFFNa_QFZeYU9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417428132</pqid></control><display><type>article</type><title>Non-Line-of-Sight Location With Gauss Filtering Algorithm Based on a Model of Photon Flight</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ren, Yu ; Xie, Zongliang ; Luo, Yihan ; Xu, Shaoxiong ; Ma, Haotong ; Tan, Yi</creator><creatorcontrib>Ren, Yu ; Xie, Zongliang ; Luo, Yihan ; Xu, Shaoxiong ; Ma, Haotong ; Tan, Yi</creatorcontrib><description>Recently, non-line-of-sight (NLOS) detection based on time of flight (TOF) has been investigated. In order to simulate the NLOS location of a hidden object, we derive the signal scattered by the object and build a model of photon flight based on photon scattering and propagation. To improve the authenticity of the model, the bidirectional reflectance distribution function (BRDF) is used to characterize the scattering process. The Gauss filter is proposed to extract the TOF of the scattering sources of interest without a priori information or manual judgment of the useful scattered signal by filtering the disturbance out of the histogram. The hidden object can then be located by TOF processing. Compared with previous work using a fitting algorithm, the Gauss filtering approach preserves more waveform information and presents improved positioning accuracy and robustness under the influence of noise, which is demonstrated in both simulation and experiment. It is possible to locate a NLOS object automatically through filtering identification of the object signal. The simplicity, high efficiency, and automation of this algorithm make it applicable for tracking a hidden moving object.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2020.2994784</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bidirectional reflectance ; bidirectional reflectance distribution function ; Computer simulation ; Detectors ; Distribution functions ; Filtering ; Filtering algorithms ; Filtration ; Gauss filter ; Gaussian process ; Histograms ; Line of sight ; Moving object recognition ; Non-line-of-sight detection ; Nonlinear optics ; Photon scatter ; Photonics ; Photons ; Scattering ; Surface treatment ; Waveforms</subject><ispartof>IEEE photonics journal, 2020-06, Vol.12 (3), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-98dfe1f3b82efa1c66addf308e0ad91c13b141b264dc623ba19ad14116064b463</citedby><cites>FETCH-LOGICAL-c405t-98dfe1f3b82efa1c66addf308e0ad91c13b141b264dc623ba19ad14116064b463</cites><orcidid>0000-0002-8553-2537 ; 0000-0001-8359-370X ; 0000-0003-0058-6526 ; 0000-0002-0423-1485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9094044$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27631,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Ren, Yu</creatorcontrib><creatorcontrib>Xie, Zongliang</creatorcontrib><creatorcontrib>Luo, Yihan</creatorcontrib><creatorcontrib>Xu, Shaoxiong</creatorcontrib><creatorcontrib>Ma, Haotong</creatorcontrib><creatorcontrib>Tan, Yi</creatorcontrib><title>Non-Line-of-Sight Location With Gauss Filtering Algorithm Based on a Model of Photon Flight</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Recently, non-line-of-sight (NLOS) detection based on time of flight (TOF) has been investigated. In order to simulate the NLOS location of a hidden object, we derive the signal scattered by the object and build a model of photon flight based on photon scattering and propagation. To improve the authenticity of the model, the bidirectional reflectance distribution function (BRDF) is used to characterize the scattering process. The Gauss filter is proposed to extract the TOF of the scattering sources of interest without a priori information or manual judgment of the useful scattered signal by filtering the disturbance out of the histogram. The hidden object can then be located by TOF processing. Compared with previous work using a fitting algorithm, the Gauss filtering approach preserves more waveform information and presents improved positioning accuracy and robustness under the influence of noise, which is demonstrated in both simulation and experiment. It is possible to locate a NLOS object automatically through filtering identification of the object signal. The simplicity, high efficiency, and automation of this algorithm make it applicable for tracking a hidden moving object.</description><subject>Algorithms</subject><subject>Bidirectional reflectance</subject><subject>bidirectional reflectance distribution function</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Distribution functions</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Filtration</subject><subject>Gauss filter</subject><subject>Gaussian process</subject><subject>Histograms</subject><subject>Line of sight</subject><subject>Moving object recognition</subject><subject>Non-line-of-sight detection</subject><subject>Nonlinear optics</subject><subject>Photon scatter</subject><subject>Photonics</subject><subject>Photons</subject><subject>Scattering</subject><subject>Surface treatment</subject><subject>Waveforms</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UctOwzAQjBBIQOEH4GKJc4rXcRz7CIgWUHlIgDhwsBw_WlchBjs98Pe4tOppV7Mzs7uaojgDPAbA4vLh5e75bUwwwWMiBG043SuOQNCqxIw2-7u-rg-L45SWGDMBtTgqPp9CX858b8vgylc_XwxoFrQafOjRhx8WaKpWKaGJ7wYbfT9HV908xDz4QtcqWYMyT6HHYGyHgkMvizBkZNKtnU6KA6e6ZE-3dVS8T27fbu7K2fP0_uZqVmqK66EU3DgLrmo5sU6BZkwZ4yrMLVZGgIaqBQotYdRoRqpWgVAmI8Dyby1l1ai43_iaoJbyO_ovFX9lUF7-AyHOpYqD152VtWZOG3DAuaEN5i2tWyCNANY2NeFN9rrYeH3H8LOyaZDLsIp9Pl8SCg0lHCqSWWTD0jGkFK3bbQUs14HI_0DkOhC5DSSLzjcib63dCQQWFFNa_QFZeYU9</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Ren, Yu</creator><creator>Xie, Zongliang</creator><creator>Luo, Yihan</creator><creator>Xu, Shaoxiong</creator><creator>Ma, Haotong</creator><creator>Tan, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8553-2537</orcidid><orcidid>https://orcid.org/0000-0001-8359-370X</orcidid><orcidid>https://orcid.org/0000-0003-0058-6526</orcidid><orcidid>https://orcid.org/0000-0002-0423-1485</orcidid></search><sort><creationdate>20200601</creationdate><title>Non-Line-of-Sight Location With Gauss Filtering Algorithm Based on a Model of Photon Flight</title><author>Ren, Yu ; Xie, Zongliang ; Luo, Yihan ; Xu, Shaoxiong ; Ma, Haotong ; Tan, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-98dfe1f3b82efa1c66addf308e0ad91c13b141b264dc623ba19ad14116064b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bidirectional reflectance</topic><topic>bidirectional reflectance distribution function</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Distribution functions</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Filtration</topic><topic>Gauss filter</topic><topic>Gaussian process</topic><topic>Histograms</topic><topic>Line of sight</topic><topic>Moving object recognition</topic><topic>Non-line-of-sight detection</topic><topic>Nonlinear optics</topic><topic>Photon scatter</topic><topic>Photonics</topic><topic>Photons</topic><topic>Scattering</topic><topic>Surface treatment</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yu</creatorcontrib><creatorcontrib>Xie, Zongliang</creatorcontrib><creatorcontrib>Luo, Yihan</creatorcontrib><creatorcontrib>Xu, Shaoxiong</creatorcontrib><creatorcontrib>Ma, Haotong</creatorcontrib><creatorcontrib>Tan, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yu</au><au>Xie, Zongliang</au><au>Luo, Yihan</au><au>Xu, Shaoxiong</au><au>Ma, Haotong</au><au>Tan, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Line-of-Sight Location With Gauss Filtering Algorithm Based on a Model of Photon Flight</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Recently, non-line-of-sight (NLOS) detection based on time of flight (TOF) has been investigated. In order to simulate the NLOS location of a hidden object, we derive the signal scattered by the object and build a model of photon flight based on photon scattering and propagation. To improve the authenticity of the model, the bidirectional reflectance distribution function (BRDF) is used to characterize the scattering process. The Gauss filter is proposed to extract the TOF of the scattering sources of interest without a priori information or manual judgment of the useful scattered signal by filtering the disturbance out of the histogram. The hidden object can then be located by TOF processing. Compared with previous work using a fitting algorithm, the Gauss filtering approach preserves more waveform information and presents improved positioning accuracy and robustness under the influence of noise, which is demonstrated in both simulation and experiment. It is possible to locate a NLOS object automatically through filtering identification of the object signal. The simplicity, high efficiency, and automation of this algorithm make it applicable for tracking a hidden moving object.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2020.2994784</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8553-2537</orcidid><orcidid>https://orcid.org/0000-0001-8359-370X</orcidid><orcidid>https://orcid.org/0000-0003-0058-6526</orcidid><orcidid>https://orcid.org/0000-0002-0423-1485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2020-06, Vol.12 (3), p.1-15
issn 1943-0655
1943-0647
language eng
recordid cdi_ieee_primary_9094044
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Bidirectional reflectance
bidirectional reflectance distribution function
Computer simulation
Detectors
Distribution functions
Filtering
Filtering algorithms
Filtration
Gauss filter
Gaussian process
Histograms
Line of sight
Moving object recognition
Non-line-of-sight detection
Nonlinear optics
Photon scatter
Photonics
Photons
Scattering
Surface treatment
Waveforms
title Non-Line-of-Sight Location With Gauss Filtering Algorithm Based on a Model of Photon Flight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Line-of-Sight%20Location%20With%20Gauss%20Filtering%20Algorithm%20Based%20on%20a%20Model%20of%20Photon%20Flight&rft.jtitle=IEEE%20photonics%20journal&rft.au=Ren,%20Yu&rft.date=2020-06-01&rft.volume=12&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2020.2994784&rft_dat=%3Cproquest_ieee_%3E2417428132%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417428132&rft_id=info:pmid/&rft_ieee_id=9094044&rft_doaj_id=oai_doaj_org_article_5c6fcd1f188d4708b45b127916b75287&rfr_iscdi=true