Semisupervised-Learning-Based Security to Detect and Mitigate Intrusions in IoT Network

Our world is moving toward an Internet of Things (IoT) era by connecting billions of IoT. There are several security loopholes in the IoT network. Intrusion can lead to performance degradation and pose a threat to data security. Hence, there is a need for a method to detect intrusion in the IoT netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2020-11, Vol.7 (11), p.11041-11052
Hauptverfasser: Ravi, Nagarathna, Shalinie, S. Mercy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11052
container_issue 11
container_start_page 11041
container_title IEEE internet of things journal
container_volume 7
creator Ravi, Nagarathna
Shalinie, S. Mercy
description Our world is moving toward an Internet of Things (IoT) era by connecting billions of IoT. There are several security loopholes in the IoT network. Intrusion can lead to performance degradation and pose a threat to data security. Hence, there is a need for a method to detect intrusion in the IoT networks. Existing solutions use supervised-learning-based intrusion detection methods that need a huge labeled data set for better accuracy. It is not easy to source out a huge labeled data set because the size of the IoT network is huge. To overcome some of the impediments in the existing solutions, we propose a novel SDRK machine learning (ML) algorithm to detect intrusion. SDRK leverages supervised deep neural networks (DNNs) and unsupervised clustering techniques. The intrusion detection and mitigation algorithms are placed in the fog nodes that are between IoT and cloud layers. We test our proposed methodology against the data deluge (DD) attack in the testbed. The SDRK model is tested on the benchmark NSL-KDD data set. We compare the results with state-of-the-art solutions. When testing with the NSL-KDD data set, we find that SDRK detects the attacks with improved accuracy of 99.78%.
doi_str_mv 10.1109/JIOT.2020.2993410
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9090290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9090290</ieee_id><sourcerecordid>2460863092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8f731d7c3842d6f1c0c786bb1bc7d961056a19daa0716e00dd4118927bc16d603</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEtPYD0BcInHucJKSNkcYX0WDHTbEsUoTd8pg7UhS0P49nTYhTral97Gth5BzBmPGQF09F7PFmAOHMVdKpAyOyIALniWplPz4X39KRiGsAKDHrpmSA_I-x7UL3Qb9twtokylq37hmmdzqfqRzNJ13cUtjS-8woolUN5a-uOiWOiItmui74NomUNfQol3QV4w_rf84Iye1_gw4OtQheXu4X0yekunssZjcTBPDlYhJXmeC2cyIPOVW1syAyXJZVawymVWy_1JqpqzWkDGJANamjOWKZ5Vh0koQQ3K537vx7VeHIZartvNNf7LkqYRcClC8T7F9yvg2BI91ufFurf22ZFDuFJY7heVOYXlQ2DMXe8Yh4l9egQKuQPwCRkJsIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460863092</pqid></control><display><type>article</type><title>Semisupervised-Learning-Based Security to Detect and Mitigate Intrusions in IoT Network</title><source>IEEE Electronic Library (IEL)</source><creator>Ravi, Nagarathna ; Shalinie, S. Mercy</creator><creatorcontrib>Ravi, Nagarathna ; Shalinie, S. Mercy</creatorcontrib><description>Our world is moving toward an Internet of Things (IoT) era by connecting billions of IoT. There are several security loopholes in the IoT network. Intrusion can lead to performance degradation and pose a threat to data security. Hence, there is a need for a method to detect intrusion in the IoT networks. Existing solutions use supervised-learning-based intrusion detection methods that need a huge labeled data set for better accuracy. It is not easy to source out a huge labeled data set because the size of the IoT network is huge. To overcome some of the impediments in the existing solutions, we propose a novel SDRK machine learning (ML) algorithm to detect intrusion. SDRK leverages supervised deep neural networks (DNNs) and unsupervised clustering techniques. The intrusion detection and mitigation algorithms are placed in the fog nodes that are between IoT and cloud layers. We test our proposed methodology against the data deluge (DD) attack in the testbed. The SDRK model is tested on the benchmark NSL-KDD data set. We compare the results with state-of-the-art solutions. When testing with the NSL-KDD data set, we find that SDRK detects the attacks with improved accuracy of 99.78%.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2993410</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cloud computing ; Clustering ; Computer architecture ; Data deluge (DD) attack ; Datasets ; fog computing ; Internet of Things ; Internet of Things (IoT) ; intrusion ; Intrusion detection systems ; Machine learning ; Model testing ; Performance degradation ; Security ; Semi-supervised learning ; semisupervised learning ; Switches ; Training</subject><ispartof>IEEE internet of things journal, 2020-11, Vol.7 (11), p.11041-11052</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8f731d7c3842d6f1c0c786bb1bc7d961056a19daa0716e00dd4118927bc16d603</citedby><cites>FETCH-LOGICAL-c293t-8f731d7c3842d6f1c0c786bb1bc7d961056a19daa0716e00dd4118927bc16d603</cites><orcidid>0000-0003-3542-1879 ; 0000-0003-0355-6832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9090290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9090290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ravi, Nagarathna</creatorcontrib><creatorcontrib>Shalinie, S. Mercy</creatorcontrib><title>Semisupervised-Learning-Based Security to Detect and Mitigate Intrusions in IoT Network</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Our world is moving toward an Internet of Things (IoT) era by connecting billions of IoT. There are several security loopholes in the IoT network. Intrusion can lead to performance degradation and pose a threat to data security. Hence, there is a need for a method to detect intrusion in the IoT networks. Existing solutions use supervised-learning-based intrusion detection methods that need a huge labeled data set for better accuracy. It is not easy to source out a huge labeled data set because the size of the IoT network is huge. To overcome some of the impediments in the existing solutions, we propose a novel SDRK machine learning (ML) algorithm to detect intrusion. SDRK leverages supervised deep neural networks (DNNs) and unsupervised clustering techniques. The intrusion detection and mitigation algorithms are placed in the fog nodes that are between IoT and cloud layers. We test our proposed methodology against the data deluge (DD) attack in the testbed. The SDRK model is tested on the benchmark NSL-KDD data set. We compare the results with state-of-the-art solutions. When testing with the NSL-KDD data set, we find that SDRK detects the attacks with improved accuracy of 99.78%.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Computer architecture</subject><subject>Data deluge (DD) attack</subject><subject>Datasets</subject><subject>fog computing</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>intrusion</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Model testing</subject><subject>Performance degradation</subject><subject>Security</subject><subject>Semi-supervised learning</subject><subject>semisupervised learning</subject><subject>Switches</subject><subject>Training</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEtPYD0BcInHucJKSNkcYX0WDHTbEsUoTd8pg7UhS0P49nTYhTral97Gth5BzBmPGQF09F7PFmAOHMVdKpAyOyIALniWplPz4X39KRiGsAKDHrpmSA_I-x7UL3Qb9twtokylq37hmmdzqfqRzNJ13cUtjS-8woolUN5a-uOiWOiItmui74NomUNfQol3QV4w_rf84Iye1_gw4OtQheXu4X0yekunssZjcTBPDlYhJXmeC2cyIPOVW1syAyXJZVawymVWy_1JqpqzWkDGJANamjOWKZ5Vh0koQQ3K537vx7VeHIZartvNNf7LkqYRcClC8T7F9yvg2BI91ufFurf22ZFDuFJY7heVOYXlQ2DMXe8Yh4l9egQKuQPwCRkJsIA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ravi, Nagarathna</creator><creator>Shalinie, S. Mercy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3542-1879</orcidid><orcidid>https://orcid.org/0000-0003-0355-6832</orcidid></search><sort><creationdate>20201101</creationdate><title>Semisupervised-Learning-Based Security to Detect and Mitigate Intrusions in IoT Network</title><author>Ravi, Nagarathna ; Shalinie, S. Mercy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8f731d7c3842d6f1c0c786bb1bc7d961056a19daa0716e00dd4118927bc16d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Computer architecture</topic><topic>Data deluge (DD) attack</topic><topic>Datasets</topic><topic>fog computing</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>intrusion</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Model testing</topic><topic>Performance degradation</topic><topic>Security</topic><topic>Semi-supervised learning</topic><topic>semisupervised learning</topic><topic>Switches</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ravi, Nagarathna</creatorcontrib><creatorcontrib>Shalinie, S. Mercy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ravi, Nagarathna</au><au>Shalinie, S. Mercy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised-Learning-Based Security to Detect and Mitigate Intrusions in IoT Network</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>7</volume><issue>11</issue><spage>11041</spage><epage>11052</epage><pages>11041-11052</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Our world is moving toward an Internet of Things (IoT) era by connecting billions of IoT. There are several security loopholes in the IoT network. Intrusion can lead to performance degradation and pose a threat to data security. Hence, there is a need for a method to detect intrusion in the IoT networks. Existing solutions use supervised-learning-based intrusion detection methods that need a huge labeled data set for better accuracy. It is not easy to source out a huge labeled data set because the size of the IoT network is huge. To overcome some of the impediments in the existing solutions, we propose a novel SDRK machine learning (ML) algorithm to detect intrusion. SDRK leverages supervised deep neural networks (DNNs) and unsupervised clustering techniques. The intrusion detection and mitigation algorithms are placed in the fog nodes that are between IoT and cloud layers. We test our proposed methodology against the data deluge (DD) attack in the testbed. The SDRK model is tested on the benchmark NSL-KDD data set. We compare the results with state-of-the-art solutions. When testing with the NSL-KDD data set, we find that SDRK detects the attacks with improved accuracy of 99.78%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2993410</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3542-1879</orcidid><orcidid>https://orcid.org/0000-0003-0355-6832</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-11, Vol.7 (11), p.11041-11052
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_9090290
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Cloud computing
Clustering
Computer architecture
Data deluge (DD) attack
Datasets
fog computing
Internet of Things
Internet of Things (IoT)
intrusion
Intrusion detection systems
Machine learning
Model testing
Performance degradation
Security
Semi-supervised learning
semisupervised learning
Switches
Training
title Semisupervised-Learning-Based Security to Detect and Mitigate Intrusions in IoT Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised-Learning-Based%20Security%20to%20Detect%20and%20Mitigate%20Intrusions%20in%20IoT%20Network&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ravi,%20Nagarathna&rft.date=2020-11-01&rft.volume=7&rft.issue=11&rft.spage=11041&rft.epage=11052&rft.pages=11041-11052&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2993410&rft_dat=%3Cproquest_RIE%3E2460863092%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460863092&rft_id=info:pmid/&rft_ieee_id=9090290&rfr_iscdi=true