Leave-One-Out Approach for Matrix Completion: Primal and Dual Analysis

In this paper, we introduce a powerful technique based on Leave-One-Out analysis to the study of low-rank matrix completion problems. Using this technique, we develop a general approach for obtaining fine-grained, entrywise bounds for iterative stochastic procedures in the presence of probabilistic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-11, Vol.66 (11), p.7274-7301
Hauptverfasser: Ding, Lijun, Chen, Yudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7301
container_issue 11
container_start_page 7274
container_title IEEE transactions on information theory
container_volume 66
creator Ding, Lijun
Chen, Yudong
description In this paper, we introduce a powerful technique based on Leave-One-Out analysis to the study of low-rank matrix completion problems. Using this technique, we develop a general approach for obtaining fine-grained, entrywise bounds for iterative stochastic procedures in the presence of probabilistic dependency. We demonstrate the power of this approach in analyzing two of the most important algorithms for matrix completion: (i) the non-convex approach based on Projected Gradient Descent (PGD) for a rank-constrained formulation, also known as the Singular Value Projection algorithm, and (ii) the convex relaxation approach based on nuclear norm minimization (NNM). Using this approach, we establish the first convergence guarantee for the original form of PGD without regularization or sample splitting , and in particular shows that it converges linearly in the infinity norm . For NNM, we use this approach to study a fictitious iterative procedure that arises in the dual analysis . Our results show that NNM recovers an d -by- d rank- r matrix with \mathcal {O}(\mu r \log (\mu r) d\log d) observed entries. This bound has optimal dependence on the matrix dimension and is independent of the condition number. To the best of our knowledge, none of previous sample complexity results for tractable matrix completion algorithms satisfies these two properties simultaneously.
doi_str_mv 10.1109/TIT.2020.2992769
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9087910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9087910</ieee_id><sourcerecordid>2453817197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d1b6553467f0081748e1f9c628645e89dbfb68bf2716c053ed6064dbe4529eed3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsD72gpuA69R5P9yVarVQqYu6HibJHUxJkziTiP33Tmlxcbn3wjmHw4fQHcFTQrB53Cw3U4opnlJjqJLmDE2IECo3UvBzNMGY6Nxwri_RVYzb9HJB6AQtVuB-IF-3acYhm_V96Fz5lfkuZO9uCPVvNu92fQND3bVP2Ueod67JXFtlz2M6Zq1r9rGON-jCuybC7Wlfo8_Fy2b-lq_Wr8v5bJWXjLEhr0ghhWBcKo-xJoprIN6UkmrJBWhTFb6QuvBUEVliwaCSWPKqAC6oAajYNXo45qaa3yPEwW67MaQS0VIuWIokRiUVPqrK0MUYwNv-0DvsLcH2QMsmWvZAy55oJcv90VIDwL_cYK0MwewPbUNkHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453817197</pqid></control><display><type>article</type><title>Leave-One-Out Approach for Matrix Completion: Primal and Dual Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Ding, Lijun ; Chen, Yudong</creator><creatorcontrib>Ding, Lijun ; Chen, Yudong</creatorcontrib><description><![CDATA[In this paper, we introduce a powerful technique based on Leave-One-Out analysis to the study of low-rank matrix completion problems. Using this technique, we develop a general approach for obtaining fine-grained, entrywise bounds for iterative stochastic procedures in the presence of probabilistic dependency. We demonstrate the power of this approach in analyzing two of the most important algorithms for matrix completion: (i) the non-convex approach based on Projected Gradient Descent (PGD) for a rank-constrained formulation, also known as the Singular Value Projection algorithm, and (ii) the convex relaxation approach based on nuclear norm minimization (NNM). Using this approach, we establish the first convergence guarantee for the original form of PGD without regularization or sample splitting , and in particular shows that it converges linearly in the infinity norm . For NNM, we use this approach to study a fictitious iterative procedure that arises in the dual analysis . Our results show that NNM recovers an <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>-by- <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula> rank- <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> matrix with <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\mu r \log (\mu r) d\log d) </tex-math></inline-formula> observed entries. This bound has optimal dependence on the matrix dimension and is independent of the condition number. To the best of our knowledge, none of previous sample complexity results for tractable matrix completion algorithms satisfies these two properties simultaneously.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.2992769</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Complexity theory ; Convergence ; Dependence ; Iterative methods ; leave-one-out ; Matrix completion ; Minimization ; Optimization ; Probabilistic logic ; Regularization ; Relaxation methods ; statistical learning</subject><ispartof>IEEE transactions on information theory, 2020-11, Vol.66 (11), p.7274-7301</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d1b6553467f0081748e1f9c628645e89dbfb68bf2716c053ed6064dbe4529eed3</citedby><cites>FETCH-LOGICAL-c333t-d1b6553467f0081748e1f9c628645e89dbfb68bf2716c053ed6064dbe4529eed3</cites><orcidid>0000-0002-6416-5635 ; 0000-0003-2667-3337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9087910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9087910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Lijun</creatorcontrib><creatorcontrib>Chen, Yudong</creatorcontrib><title>Leave-One-Out Approach for Matrix Completion: Primal and Dual Analysis</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[In this paper, we introduce a powerful technique based on Leave-One-Out analysis to the study of low-rank matrix completion problems. Using this technique, we develop a general approach for obtaining fine-grained, entrywise bounds for iterative stochastic procedures in the presence of probabilistic dependency. We demonstrate the power of this approach in analyzing two of the most important algorithms for matrix completion: (i) the non-convex approach based on Projected Gradient Descent (PGD) for a rank-constrained formulation, also known as the Singular Value Projection algorithm, and (ii) the convex relaxation approach based on nuclear norm minimization (NNM). Using this approach, we establish the first convergence guarantee for the original form of PGD without regularization or sample splitting , and in particular shows that it converges linearly in the infinity norm . For NNM, we use this approach to study a fictitious iterative procedure that arises in the dual analysis . Our results show that NNM recovers an <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>-by- <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula> rank- <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> matrix with <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\mu r \log (\mu r) d\log d) </tex-math></inline-formula> observed entries. This bound has optimal dependence on the matrix dimension and is independent of the condition number. To the best of our knowledge, none of previous sample complexity results for tractable matrix completion algorithms satisfies these two properties simultaneously.]]></description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Complexity theory</subject><subject>Convergence</subject><subject>Dependence</subject><subject>Iterative methods</subject><subject>leave-one-out</subject><subject>Matrix completion</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Probabilistic logic</subject><subject>Regularization</subject><subject>Relaxation methods</subject><subject>statistical learning</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsD72gpuA69R5P9yVarVQqYu6HibJHUxJkziTiP33Tmlxcbn3wjmHw4fQHcFTQrB53Cw3U4opnlJjqJLmDE2IECo3UvBzNMGY6Nxwri_RVYzb9HJB6AQtVuB-IF-3acYhm_V96Fz5lfkuZO9uCPVvNu92fQND3bVP2Ueod67JXFtlz2M6Zq1r9rGON-jCuybC7Wlfo8_Fy2b-lq_Wr8v5bJWXjLEhr0ghhWBcKo-xJoprIN6UkmrJBWhTFb6QuvBUEVliwaCSWPKqAC6oAajYNXo45qaa3yPEwW67MaQS0VIuWIokRiUVPqrK0MUYwNv-0DvsLcH2QMsmWvZAy55oJcv90VIDwL_cYK0MwewPbUNkHA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ding, Lijun</creator><creator>Chen, Yudong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6416-5635</orcidid><orcidid>https://orcid.org/0000-0003-2667-3337</orcidid></search><sort><creationdate>20201101</creationdate><title>Leave-One-Out Approach for Matrix Completion: Primal and Dual Analysis</title><author>Ding, Lijun ; Chen, Yudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d1b6553467f0081748e1f9c628645e89dbfb68bf2716c053ed6064dbe4529eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Complexity theory</topic><topic>Convergence</topic><topic>Dependence</topic><topic>Iterative methods</topic><topic>leave-one-out</topic><topic>Matrix completion</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Probabilistic logic</topic><topic>Regularization</topic><topic>Relaxation methods</topic><topic>statistical learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Lijun</creatorcontrib><creatorcontrib>Chen, Yudong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Lijun</au><au>Chen, Yudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leave-One-Out Approach for Matrix Completion: Primal and Dual Analysis</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>66</volume><issue>11</issue><spage>7274</spage><epage>7301</epage><pages>7274-7301</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[In this paper, we introduce a powerful technique based on Leave-One-Out analysis to the study of low-rank matrix completion problems. Using this technique, we develop a general approach for obtaining fine-grained, entrywise bounds for iterative stochastic procedures in the presence of probabilistic dependency. We demonstrate the power of this approach in analyzing two of the most important algorithms for matrix completion: (i) the non-convex approach based on Projected Gradient Descent (PGD) for a rank-constrained formulation, also known as the Singular Value Projection algorithm, and (ii) the convex relaxation approach based on nuclear norm minimization (NNM). Using this approach, we establish the first convergence guarantee for the original form of PGD without regularization or sample splitting , and in particular shows that it converges linearly in the infinity norm . For NNM, we use this approach to study a fictitious iterative procedure that arises in the dual analysis . Our results show that NNM recovers an <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>-by- <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula> rank- <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> matrix with <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\mu r \log (\mu r) d\log d) </tex-math></inline-formula> observed entries. This bound has optimal dependence on the matrix dimension and is independent of the condition number. To the best of our knowledge, none of previous sample complexity results for tractable matrix completion algorithms satisfies these two properties simultaneously.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.2992769</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-6416-5635</orcidid><orcidid>https://orcid.org/0000-0003-2667-3337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-11, Vol.66 (11), p.7274-7301
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9087910
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Complexity theory
Convergence
Dependence
Iterative methods
leave-one-out
Matrix completion
Minimization
Optimization
Probabilistic logic
Regularization
Relaxation methods
statistical learning
title Leave-One-Out Approach for Matrix Completion: Primal and Dual Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leave-One-Out%20Approach%20for%20Matrix%20Completion:%20Primal%20and%20Dual%20Analysis&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Ding,%20Lijun&rft.date=2020-11-01&rft.volume=66&rft.issue=11&rft.spage=7274&rft.epage=7301&rft.pages=7274-7301&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.2992769&rft_dat=%3Cproquest_RIE%3E2453817197%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453817197&rft_id=info:pmid/&rft_ieee_id=9087910&rfr_iscdi=true