Intelligent Reflecting Surface-Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design

The concept of reconfiguring wireless propagation environments using intelligent reflecting surfaces (IRS)s has recently emerged, where an IRS comprises of a large number of passive reflecting elements that can smartly reflect the impinging electromagnetic waves for performance enhancement. Previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Communications Society 2020, Vol.1, p.661-680
Hauptverfasser: Nadeem, Qurrat-Ul-Ain, Alwazani, Hibatallah, Kammoun, Abla, Chaaban, Anas, Debbah, Merouane, Alouini, Mohamed-Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue
container_start_page 661
container_title IEEE open journal of the Communications Society
container_volume 1
creator Nadeem, Qurrat-Ul-Ain
Alwazani, Hibatallah
Kammoun, Abla
Chaaban, Anas
Debbah, Merouane
Alouini, Mohamed-Slim
description The concept of reconfiguring wireless propagation environments using intelligent reflecting surfaces (IRS)s has recently emerged, where an IRS comprises of a large number of passive reflecting elements that can smartly reflect the impinging electromagnetic waves for performance enhancement. Previous works have shown promising gains assuming the availability of perfect channel state information (CSI) at the base station (BS) and the IRS, which is impractical due to the passive nature of the reflecting elements. This paper makes one of the preliminary contributions of studying an IRS-assisted multi-user multiple-input single-output (MISO) communication system under imperfect CSI. Different from the few recent works that develop least-squares (LS) estimates of the IRS-assisted channel vectors, we exploit the prior knowledge of the large-scale fading statistics at the BS to derive the Bayesian minimum mean squared error (MMSE) channel estimates under a protocol in which the IRS applies a set of optimal phase shifts vectors over multiple channel estimation sub-phases. The resulting mean squared error (MSE) is both analytically and numerically shown to be lower than that achieved by the LS estimates. Joint designs for the precoding and power allocation at the BS and reflect beamforming at the IRS are proposed to maximize the minimum user signal-to-interference-plus-noise ratio (SINR) subject to a transmit power constraint. Performance evaluation results illustrate the efficiency of the proposed system and study its susceptibility to channel estimation errors.
doi_str_mv 10.1109/OJCOMS.2020.2992791
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9087848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9087848</ieee_id><doaj_id>oai_doaj_org_article_ad9498c91aa0417da13018a9d2e9099b</doaj_id><sourcerecordid>2532109127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c3d36a4d01058b09425852183e4be903c0cf97b8bd3efc1d240b7c0d3d15f12e3</originalsourceid><addsrcrecordid>eNpNkUFr3DAQhU1oISHNL8hFkLO3GkmOrd5SN203ZFnoNtCbkKXxRostbSX50H9fbxxCTjM85r038BXFNdAVAJWftw_tdrNbMcroiknJaglnxQW7FaIEVv358G4_L65SOlBKWQUAXFwUx7XPOAxujz6TX9gPaLLze7KbYq8NlncpuZTRks00ZFc-JYxks95tSRvGcfLO6OyC_0LaZ-09DuQ-ZTe-aER7S76iHvsQx1PkN0xu7z8VH3s9JLx6nZfF0_f73-3P8nH7Y93ePZZG1CKXhlt-q4WlQKumo1KwqqkYNBxFh5JyQ00v667pLMfegGWCdrWhlluoemDIL4v1kmuDPqhjnL-K_1TQTr0IIe6VjtmZAZW2UsjGSNCaCqitBk6h0dKyuUnKbs66WbKOMfydMGV1CFP08_uKVZzNEIDV8xVfrkwMKUXs31qBqhMptZBSJ1LqldTsul5cDhHfHJI2dSMa_h-Odo-c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532109127</pqid></control><display><type>article</type><title>Intelligent Reflecting Surface-Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Nadeem, Qurrat-Ul-Ain ; Alwazani, Hibatallah ; Kammoun, Abla ; Chaaban, Anas ; Debbah, Merouane ; Alouini, Mohamed-Slim</creator><creatorcontrib>Nadeem, Qurrat-Ul-Ain ; Alwazani, Hibatallah ; Kammoun, Abla ; Chaaban, Anas ; Debbah, Merouane ; Alouini, Mohamed-Slim</creatorcontrib><description>The concept of reconfiguring wireless propagation environments using intelligent reflecting surfaces (IRS)s has recently emerged, where an IRS comprises of a large number of passive reflecting elements that can smartly reflect the impinging electromagnetic waves for performance enhancement. Previous works have shown promising gains assuming the availability of perfect channel state information (CSI) at the base station (BS) and the IRS, which is impractical due to the passive nature of the reflecting elements. This paper makes one of the preliminary contributions of studying an IRS-assisted multi-user multiple-input single-output (MISO) communication system under imperfect CSI. Different from the few recent works that develop least-squares (LS) estimates of the IRS-assisted channel vectors, we exploit the prior knowledge of the large-scale fading statistics at the BS to derive the Bayesian minimum mean squared error (MMSE) channel estimates under a protocol in which the IRS applies a set of optimal phase shifts vectors over multiple channel estimation sub-phases. The resulting mean squared error (MSE) is both analytically and numerically shown to be lower than that achieved by the LS estimates. Joint designs for the precoding and power allocation at the BS and reflect beamforming at the IRS are proposed to maximize the minimum user signal-to-interference-plus-noise ratio (SINR) subject to a transmit power constraint. Performance evaluation results illustrate the efficiency of the proposed system and study its susceptibility to channel estimation errors.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2020.2992791</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating optimization ; Array signal processing ; Beamforming ; Channel estimation ; Communications systems ; Electromagnetic radiation ; Error analysis ; Estimates ; intelligent reflecting surface ; Interference ; minimum mean squared error ; MISO (control systems) ; MISO communication ; multiple-input single-output system ; Performance enhancement ; Performance evaluation ; Precoding ; Protocols ; Reconfigurable intelligent surfaces ; Signal to noise ratio</subject><ispartof>IEEE open journal of the Communications Society, 2020, Vol.1, p.661-680</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c3d36a4d01058b09425852183e4be903c0cf97b8bd3efc1d240b7c0d3d15f12e3</citedby><cites>FETCH-LOGICAL-c474t-c3d36a4d01058b09425852183e4be903c0cf97b8bd3efc1d240b7c0d3d15f12e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9087848$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Nadeem, Qurrat-Ul-Ain</creatorcontrib><creatorcontrib>Alwazani, Hibatallah</creatorcontrib><creatorcontrib>Kammoun, Abla</creatorcontrib><creatorcontrib>Chaaban, Anas</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Intelligent Reflecting Surface-Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>The concept of reconfiguring wireless propagation environments using intelligent reflecting surfaces (IRS)s has recently emerged, where an IRS comprises of a large number of passive reflecting elements that can smartly reflect the impinging electromagnetic waves for performance enhancement. Previous works have shown promising gains assuming the availability of perfect channel state information (CSI) at the base station (BS) and the IRS, which is impractical due to the passive nature of the reflecting elements. This paper makes one of the preliminary contributions of studying an IRS-assisted multi-user multiple-input single-output (MISO) communication system under imperfect CSI. Different from the few recent works that develop least-squares (LS) estimates of the IRS-assisted channel vectors, we exploit the prior knowledge of the large-scale fading statistics at the BS to derive the Bayesian minimum mean squared error (MMSE) channel estimates under a protocol in which the IRS applies a set of optimal phase shifts vectors over multiple channel estimation sub-phases. The resulting mean squared error (MSE) is both analytically and numerically shown to be lower than that achieved by the LS estimates. Joint designs for the precoding and power allocation at the BS and reflect beamforming at the IRS are proposed to maximize the minimum user signal-to-interference-plus-noise ratio (SINR) subject to a transmit power constraint. Performance evaluation results illustrate the efficiency of the proposed system and study its susceptibility to channel estimation errors.</description><subject>Alternating optimization</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Channel estimation</subject><subject>Communications systems</subject><subject>Electromagnetic radiation</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>intelligent reflecting surface</subject><subject>Interference</subject><subject>minimum mean squared error</subject><subject>MISO (control systems)</subject><subject>MISO communication</subject><subject>multiple-input single-output system</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Precoding</subject><subject>Protocols</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Signal to noise ratio</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFr3DAQhU1oISHNL8hFkLO3GkmOrd5SN203ZFnoNtCbkKXxRostbSX50H9fbxxCTjM85r038BXFNdAVAJWftw_tdrNbMcroiknJaglnxQW7FaIEVv358G4_L65SOlBKWQUAXFwUx7XPOAxujz6TX9gPaLLze7KbYq8NlncpuZTRks00ZFc-JYxks95tSRvGcfLO6OyC_0LaZ-09DuQ-ZTe-aER7S76iHvsQx1PkN0xu7z8VH3s9JLx6nZfF0_f73-3P8nH7Y93ePZZG1CKXhlt-q4WlQKumo1KwqqkYNBxFh5JyQ00v667pLMfegGWCdrWhlluoemDIL4v1kmuDPqhjnL-K_1TQTr0IIe6VjtmZAZW2UsjGSNCaCqitBk6h0dKyuUnKbs66WbKOMfydMGV1CFP08_uKVZzNEIDV8xVfrkwMKUXs31qBqhMptZBSJ1LqldTsul5cDhHfHJI2dSMa_h-Odo-c</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nadeem, Qurrat-Ul-Ain</creator><creator>Alwazani, Hibatallah</creator><creator>Kammoun, Abla</creator><creator>Chaaban, Anas</creator><creator>Debbah, Merouane</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Intelligent Reflecting Surface-Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design</title><author>Nadeem, Qurrat-Ul-Ain ; Alwazani, Hibatallah ; Kammoun, Abla ; Chaaban, Anas ; Debbah, Merouane ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c3d36a4d01058b09425852183e4be903c0cf97b8bd3efc1d240b7c0d3d15f12e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternating optimization</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Channel estimation</topic><topic>Communications systems</topic><topic>Electromagnetic radiation</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>intelligent reflecting surface</topic><topic>Interference</topic><topic>minimum mean squared error</topic><topic>MISO (control systems)</topic><topic>MISO communication</topic><topic>multiple-input single-output system</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Precoding</topic><topic>Protocols</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadeem, Qurrat-Ul-Ain</creatorcontrib><creatorcontrib>Alwazani, Hibatallah</creatorcontrib><creatorcontrib>Kammoun, Abla</creatorcontrib><creatorcontrib>Chaaban, Anas</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadeem, Qurrat-Ul-Ain</au><au>Alwazani, Hibatallah</au><au>Kammoun, Abla</au><au>Chaaban, Anas</au><au>Debbah, Merouane</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Reflecting Surface-Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2020</date><risdate>2020</risdate><volume>1</volume><spage>661</spage><epage>680</epage><pages>661-680</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>The concept of reconfiguring wireless propagation environments using intelligent reflecting surfaces (IRS)s has recently emerged, where an IRS comprises of a large number of passive reflecting elements that can smartly reflect the impinging electromagnetic waves for performance enhancement. Previous works have shown promising gains assuming the availability of perfect channel state information (CSI) at the base station (BS) and the IRS, which is impractical due to the passive nature of the reflecting elements. This paper makes one of the preliminary contributions of studying an IRS-assisted multi-user multiple-input single-output (MISO) communication system under imperfect CSI. Different from the few recent works that develop least-squares (LS) estimates of the IRS-assisted channel vectors, we exploit the prior knowledge of the large-scale fading statistics at the BS to derive the Bayesian minimum mean squared error (MMSE) channel estimates under a protocol in which the IRS applies a set of optimal phase shifts vectors over multiple channel estimation sub-phases. The resulting mean squared error (MSE) is both analytically and numerically shown to be lower than that achieved by the LS estimates. Joint designs for the precoding and power allocation at the BS and reflect beamforming at the IRS are proposed to maximize the minimum user signal-to-interference-plus-noise ratio (SINR) subject to a transmit power constraint. Performance evaluation results illustrate the efficiency of the proposed system and study its susceptibility to channel estimation errors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCOMS.2020.2992791</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-125X
ispartof IEEE open journal of the Communications Society, 2020, Vol.1, p.661-680
issn 2644-125X
2644-125X
language eng
recordid cdi_ieee_primary_9087848
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Alternating optimization
Array signal processing
Beamforming
Channel estimation
Communications systems
Electromagnetic radiation
Error analysis
Estimates
intelligent reflecting surface
Interference
minimum mean squared error
MISO (control systems)
MISO communication
multiple-input single-output system
Performance enhancement
Performance evaluation
Precoding
Protocols
Reconfigurable intelligent surfaces
Signal to noise ratio
title Intelligent Reflecting Surface-Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Reflecting%20Surface-Assisted%20Multi-User%20MISO%20Communication:%20Channel%20Estimation%20and%20Beamforming%20Design&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Nadeem,%20Qurrat-Ul-Ain&rft.date=2020&rft.volume=1&rft.spage=661&rft.epage=680&rft.pages=661-680&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2020.2992791&rft_dat=%3Cproquest_ieee_%3E2532109127%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532109127&rft_id=info:pmid/&rft_ieee_id=9087848&rft_doaj_id=oai_doaj_org_article_ad9498c91aa0417da13018a9d2e9099b&rfr_iscdi=true