Hyperspectral Anomaly Detection Using Dual Window Density
Hyperspectral anomaly detection is one of the most active topics in hyperspectral image (HSI) analysis. The fine spectral information of HSIs allows us to uncover anomalies with very high accuracy. Recently, an intrinsic image decomposition (IID) model has been introduced for low-rank IID (LRIID) in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2020-12, Vol.58 (12), p.8503-8517 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8517 |
---|---|
container_issue | 12 |
container_start_page | 8503 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 58 |
creator | Tu, Bing Yang, Xianchang Zhou, Chengle He, Danbing Plaza, Antonio |
description | Hyperspectral anomaly detection is one of the most active topics in hyperspectral image (HSI) analysis. The fine spectral information of HSIs allows us to uncover anomalies with very high accuracy. Recently, an intrinsic image decomposition (IID) model has been introduced for low-rank IID (LRIID) in multispectral images. Inspired by the LRIID, which is able to effectively recover the reflectance and shading components of the multispectral image, this article adapts the LRIID for obtaining the reflectance component of HSIs (which is the key feature for the discrimination of different objects). In order to exploit the reflectance component, we also propose a new dual window density (DWD)-based detector for anomaly detection, which is based on the idea that anomalies are usually rare pixels and, thus, exhibit low density in the image. The density analysis of DWD is intended not only to circumvent the Gaussian assumption regarding the distribution of HSI data, but also to mitigate the contamination of background statistics caused by anomalies. The dual window operation of our DWD is specifically designed to adaptively calculate the density of each pixel under test, so as to identify anomalies with nonspecific sizes. Our experimental results, obtained on a database of real HSIs including Airport, Beach, and Urban scenes, demonstrate the superiority of the proposed method in terms of detection performance when compared to other widely used anomaly detection methods. |
doi_str_mv | 10.1109/TGRS.2020.2988385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9086881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9086881</ieee_id><sourcerecordid>2465436385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-27dc59f2b2f0d78f63d626ec722b7773ed79fb9b7c0f3386967f11268cd3a1293</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dmU3241habYWCoC0el2SzKyltEndTJP--W1o8Dcz7McxDyCPQCQBVL-vF59cEKdIJKimZzK_ICPJcppRn2TUZUVA8RanwltyFsKUUshzEiKjl0FkfOmt6X-ySadPui92QzG0fN3XbJJtQNz_J_BDF77qp2r-oNaHuh3ty44pdsA-XOSabt9f1bJmuPhbvs-kqNahYn6KoTK4cluhoJaTjrOLIrRGIpRCC2UooV6pSGOoYk1xx4QCQS1OxAmLFmDyfezvf_h5s6PW2PfgmntSY8TxjPH4bXXB2Gd-G4K3Tna_3hR80UH0ipE-E9ImQvhCKmadzprbW_vsVlVxKYEdoS2D2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436385</pqid></control><display><type>article</type><title>Hyperspectral Anomaly Detection Using Dual Window Density</title><source>IEEE Electronic Library (IEL)</source><creator>Tu, Bing ; Yang, Xianchang ; Zhou, Chengle ; He, Danbing ; Plaza, Antonio</creator><creatorcontrib>Tu, Bing ; Yang, Xianchang ; Zhou, Chengle ; He, Danbing ; Plaza, Antonio</creatorcontrib><description>Hyperspectral anomaly detection is one of the most active topics in hyperspectral image (HSI) analysis. The fine spectral information of HSIs allows us to uncover anomalies with very high accuracy. Recently, an intrinsic image decomposition (IID) model has been introduced for low-rank IID (LRIID) in multispectral images. Inspired by the LRIID, which is able to effectively recover the reflectance and shading components of the multispectral image, this article adapts the LRIID for obtaining the reflectance component of HSIs (which is the key feature for the discrimination of different objects). In order to exploit the reflectance component, we also propose a new dual window density (DWD)-based detector for anomaly detection, which is based on the idea that anomalies are usually rare pixels and, thus, exhibit low density in the image. The density analysis of DWD is intended not only to circumvent the Gaussian assumption regarding the distribution of HSI data, but also to mitigate the contamination of background statistics caused by anomalies. The dual window operation of our DWD is specifically designed to adaptively calculate the density of each pixel under test, so as to identify anomalies with nonspecific sizes. Our experimental results, obtained on a database of real HSIs including Airport, Beach, and Urban scenes, demonstrate the superiority of the proposed method in terms of detection performance when compared to other widely used anomaly detection methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.2988385</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Airports ; Anomalies ; Anomaly detection ; Contamination ; Covariance matrices ; Density ; Detection ; Detectors ; dual window ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image processing ; intrinsic image decomposition (IID) ; Microsoft Windows ; Pixels ; Reflectance ; Shading ; Statistical analysis ; Statistical methods</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-12, Vol.58 (12), p.8503-8517</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-27dc59f2b2f0d78f63d626ec722b7773ed79fb9b7c0f3386967f11268cd3a1293</citedby><cites>FETCH-LOGICAL-c293t-27dc59f2b2f0d78f63d626ec722b7773ed79fb9b7c0f3386967f11268cd3a1293</cites><orcidid>0000-0002-1486-0496 ; 0000-0002-9613-1659 ; 0000-0001-5802-9496 ; 0000-0003-3107-5446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9086881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9086881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tu, Bing</creatorcontrib><creatorcontrib>Yang, Xianchang</creatorcontrib><creatorcontrib>Zhou, Chengle</creatorcontrib><creatorcontrib>He, Danbing</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><title>Hyperspectral Anomaly Detection Using Dual Window Density</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Hyperspectral anomaly detection is one of the most active topics in hyperspectral image (HSI) analysis. The fine spectral information of HSIs allows us to uncover anomalies with very high accuracy. Recently, an intrinsic image decomposition (IID) model has been introduced for low-rank IID (LRIID) in multispectral images. Inspired by the LRIID, which is able to effectively recover the reflectance and shading components of the multispectral image, this article adapts the LRIID for obtaining the reflectance component of HSIs (which is the key feature for the discrimination of different objects). In order to exploit the reflectance component, we also propose a new dual window density (DWD)-based detector for anomaly detection, which is based on the idea that anomalies are usually rare pixels and, thus, exhibit low density in the image. The density analysis of DWD is intended not only to circumvent the Gaussian assumption regarding the distribution of HSI data, but also to mitigate the contamination of background statistics caused by anomalies. The dual window operation of our DWD is specifically designed to adaptively calculate the density of each pixel under test, so as to identify anomalies with nonspecific sizes. Our experimental results, obtained on a database of real HSIs including Airport, Beach, and Urban scenes, demonstrate the superiority of the proposed method in terms of detection performance when compared to other widely used anomaly detection methods.</description><subject>Airports</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Contamination</subject><subject>Covariance matrices</subject><subject>Density</subject><subject>Detection</subject><subject>Detectors</subject><subject>dual window</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>intrinsic image decomposition (IID)</subject><subject>Microsoft Windows</subject><subject>Pixels</subject><subject>Reflectance</subject><subject>Shading</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dmU3241habYWCoC0el2SzKyltEndTJP--W1o8Dcz7McxDyCPQCQBVL-vF59cEKdIJKimZzK_ICPJcppRn2TUZUVA8RanwltyFsKUUshzEiKjl0FkfOmt6X-ySadPui92QzG0fN3XbJJtQNz_J_BDF77qp2r-oNaHuh3ty44pdsA-XOSabt9f1bJmuPhbvs-kqNahYn6KoTK4cluhoJaTjrOLIrRGIpRCC2UooV6pSGOoYk1xx4QCQS1OxAmLFmDyfezvf_h5s6PW2PfgmntSY8TxjPH4bXXB2Gd-G4K3Tna_3hR80UH0ipE-E9ImQvhCKmadzprbW_vsVlVxKYEdoS2D2</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Tu, Bing</creator><creator>Yang, Xianchang</creator><creator>Zhou, Chengle</creator><creator>He, Danbing</creator><creator>Plaza, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1486-0496</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0001-5802-9496</orcidid><orcidid>https://orcid.org/0000-0003-3107-5446</orcidid></search><sort><creationdate>20201201</creationdate><title>Hyperspectral Anomaly Detection Using Dual Window Density</title><author>Tu, Bing ; Yang, Xianchang ; Zhou, Chengle ; He, Danbing ; Plaza, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-27dc59f2b2f0d78f63d626ec722b7773ed79fb9b7c0f3386967f11268cd3a1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airports</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Contamination</topic><topic>Covariance matrices</topic><topic>Density</topic><topic>Detection</topic><topic>Detectors</topic><topic>dual window</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>intrinsic image decomposition (IID)</topic><topic>Microsoft Windows</topic><topic>Pixels</topic><topic>Reflectance</topic><topic>Shading</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Bing</creatorcontrib><creatorcontrib>Yang, Xianchang</creatorcontrib><creatorcontrib>Zhou, Chengle</creatorcontrib><creatorcontrib>He, Danbing</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tu, Bing</au><au>Yang, Xianchang</au><au>Zhou, Chengle</au><au>He, Danbing</au><au>Plaza, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Anomaly Detection Using Dual Window Density</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>58</volume><issue>12</issue><spage>8503</spage><epage>8517</epage><pages>8503-8517</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Hyperspectral anomaly detection is one of the most active topics in hyperspectral image (HSI) analysis. The fine spectral information of HSIs allows us to uncover anomalies with very high accuracy. Recently, an intrinsic image decomposition (IID) model has been introduced for low-rank IID (LRIID) in multispectral images. Inspired by the LRIID, which is able to effectively recover the reflectance and shading components of the multispectral image, this article adapts the LRIID for obtaining the reflectance component of HSIs (which is the key feature for the discrimination of different objects). In order to exploit the reflectance component, we also propose a new dual window density (DWD)-based detector for anomaly detection, which is based on the idea that anomalies are usually rare pixels and, thus, exhibit low density in the image. The density analysis of DWD is intended not only to circumvent the Gaussian assumption regarding the distribution of HSI data, but also to mitigate the contamination of background statistics caused by anomalies. The dual window operation of our DWD is specifically designed to adaptively calculate the density of each pixel under test, so as to identify anomalies with nonspecific sizes. Our experimental results, obtained on a database of real HSIs including Airport, Beach, and Urban scenes, demonstrate the superiority of the proposed method in terms of detection performance when compared to other widely used anomaly detection methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.2988385</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1486-0496</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0001-5802-9496</orcidid><orcidid>https://orcid.org/0000-0003-3107-5446</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2020-12, Vol.58 (12), p.8503-8517 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9086881 |
source | IEEE Electronic Library (IEL) |
subjects | Airports Anomalies Anomaly detection Contamination Covariance matrices Density Detection Detectors dual window hyperspectral image (HSI) Hyperspectral imaging Image processing intrinsic image decomposition (IID) Microsoft Windows Pixels Reflectance Shading Statistical analysis Statistical methods |
title | Hyperspectral Anomaly Detection Using Dual Window Density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Anomaly%20Detection%20Using%20Dual%20Window%20Density&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Tu,%20Bing&rft.date=2020-12-01&rft.volume=58&rft.issue=12&rft.spage=8503&rft.epage=8517&rft.pages=8503-8517&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.2988385&rft_dat=%3Cproquest_RIE%3E2465436385%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465436385&rft_id=info:pmid/&rft_ieee_id=9086881&rfr_iscdi=true |