Resource Allocation for Cloud-Based Software Services Using Prediction-Enabled Feedback Control With Reinforcement Learning

With time-varying workloads and service requests, cloud-based software services necessitate adaptive resource allocation for guaranteeing Quality-of-Service (QoS) and reducing resource costs. However, due to the ever-changing system states, resource allocation for cloud-based software services faces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2022-04, Vol.10 (2), p.1117-1129
Hauptverfasser: Chen, Xing, Zhu, Fangning, Chen, Zheyi, Min, Geyong, Zheng, Xianghan, Rong, Chunming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1129
container_issue 2
container_start_page 1117
container_title IEEE transactions on cloud computing
container_volume 10
creator Chen, Xing
Zhu, Fangning
Chen, Zheyi
Min, Geyong
Zheng, Xianghan
Rong, Chunming
description With time-varying workloads and service requests, cloud-based software services necessitate adaptive resource allocation for guaranteeing Quality-of-Service (QoS) and reducing resource costs. However, due to the ever-changing system states, resource allocation for cloud-based software services faces huge challenges in dynamics and complexity. The traditional approaches mostly rely on expert knowledge or numerous iterations, which might lead to weak adaptiveness and extra costs. Moreover, existing RL-based methods target the environment with the fixed workload, and thus they are unable to effectively fit in the real-world scenarios with variable workloads. To address these important challenges, we propose a Prediction-enabled feedback Control with Reinforcement learning based resource Allocation (PCRA) method. First, a novel Q-value prediction model is designed to predict the values of management operations (by Q-values) at different system states. The model uses multiple prediction learners for making accurate Q-value prediction by integrating the Q-learning algorithm. Next, the objective resource allocation plans can be found by using a new feedback-control based decision-making algorithm. Using the RUBiS benchmark, simulation results demonstrate that the PCRA chooses the management operations of resource allocation with 93.7 percent correctness. Moreover, the PCRA achieves optimal/near-optimal performance, and it outperforms the classic ML-based and rule-based methods by 5\sim ∼ 7% and 10\sim ∼ 13%, respectively.
doi_str_mv 10.1109/TCC.2020.2992537
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9086132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9086132</ieee_id><sourcerecordid>2674084169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-25827145fe695c1b247a880c4a73e42f22ee2908fae994c10d551fb1f0e7557a3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsGjvgpcFz6k7m2ySPdbQqlBQ-oHHsNnMamqarbupIv7zbmkR5zJz-L03M4-QK2AjACZvl0Ux4oyzEZeSizg7IQMOaR5lkMLpv_mcDL1fs1C5AAlyQH7m6O3OaaTjtrVa9Y3tqLGOFq3d1dGd8ljThTX9l3JIF-g-G42ernzTvdJnh3Wj95Jo0qmqDegUsa6UfqeF7XpnW_rS9G90jk0XTDVusOvpDJXrgv6SnBnVehwe-wVZTSfL4iGaPd0_FuNZpDmHPuIi5xkkwmAqhYaKJ5nKc6YTlcWYcMM5IpcsNwqlTDSwWggwFRiGmRCZii_IzcF36-zHDn1frsPLXVhZ8jRLWJ5AKgPFDpR21nuHpty6ZqPcdwms3KdchpTLfcrlMeUguT5IGkT8w8MpKcQ8_gUQVHi7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674084169</pqid></control><display><type>article</type><title>Resource Allocation for Cloud-Based Software Services Using Prediction-Enabled Feedback Control With Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xing ; Zhu, Fangning ; Chen, Zheyi ; Min, Geyong ; Zheng, Xianghan ; Rong, Chunming</creator><creatorcontrib>Chen, Xing ; Zhu, Fangning ; Chen, Zheyi ; Min, Geyong ; Zheng, Xianghan ; Rong, Chunming</creatorcontrib><description><![CDATA[With time-varying workloads and service requests, cloud-based software services necessitate adaptive resource allocation for guaranteeing Quality-of-Service (QoS) and reducing resource costs. However, due to the ever-changing system states, resource allocation for cloud-based software services faces huge challenges in dynamics and complexity. The traditional approaches mostly rely on expert knowledge or numerous iterations, which might lead to weak adaptiveness and extra costs. Moreover, existing RL-based methods target the environment with the fixed workload, and thus they are unable to effectively fit in the real-world scenarios with variable workloads. To address these important challenges, we propose a Prediction-enabled feedback Control with Reinforcement learning based resource Allocation (PCRA) method. First, a novel Q-value prediction model is designed to predict the values of management operations (by Q-values) at different system states. The model uses multiple prediction learners for making accurate Q-value prediction by integrating the Q-learning algorithm. Next, the objective resource allocation plans can be found by using a new feedback-control based decision-making algorithm. Using the RUBiS benchmark, simulation results demonstrate that the PCRA chooses the management operations of resource allocation with 93.7 percent correctness. Moreover, the PCRA achieves optimal/near-optimal performance, and it outperforms the classic ML-based and rule-based methods by 5<inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math><mml:mo>∼</mml:mo></mml:math><inline-graphic xlink:href="chen-ieq1-2992537.gif"/> </inline-formula>7% and 10<inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math><mml:mo>∼</mml:mo></mml:math><inline-graphic xlink:href="chen-ieq2-2992537.gif"/> </inline-formula>13%, respectively.]]></description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2020.2992537</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Cloud-based software services ; Control systems ; Decision making ; Feedback control ; Machine learning ; Prediction algorithms ; Prediction models ; Predictive models ; Q values ; Q-value prediction ; Quality of service ; reinforcement learning ; Resource allocation ; Resource management ; Software ; Software services ; Workload ; Workloads</subject><ispartof>IEEE transactions on cloud computing, 2022-04, Vol.10 (2), p.1117-1129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-25827145fe695c1b247a880c4a73e42f22ee2908fae994c10d551fb1f0e7557a3</citedby><cites>FETCH-LOGICAL-c221t-25827145fe695c1b247a880c4a73e42f22ee2908fae994c10d551fb1f0e7557a3</cites><orcidid>0000-0001-9641-3528 ; 0000-0002-8347-0539 ; 0000-0002-6349-068X ; 0000-0003-1395-7314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9086132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9086132$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Zhu, Fangning</creatorcontrib><creatorcontrib>Chen, Zheyi</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Zheng, Xianghan</creatorcontrib><creatorcontrib>Rong, Chunming</creatorcontrib><title>Resource Allocation for Cloud-Based Software Services Using Prediction-Enabled Feedback Control With Reinforcement Learning</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description><![CDATA[With time-varying workloads and service requests, cloud-based software services necessitate adaptive resource allocation for guaranteeing Quality-of-Service (QoS) and reducing resource costs. However, due to the ever-changing system states, resource allocation for cloud-based software services faces huge challenges in dynamics and complexity. The traditional approaches mostly rely on expert knowledge or numerous iterations, which might lead to weak adaptiveness and extra costs. Moreover, existing RL-based methods target the environment with the fixed workload, and thus they are unable to effectively fit in the real-world scenarios with variable workloads. To address these important challenges, we propose a Prediction-enabled feedback Control with Reinforcement learning based resource Allocation (PCRA) method. First, a novel Q-value prediction model is designed to predict the values of management operations (by Q-values) at different system states. The model uses multiple prediction learners for making accurate Q-value prediction by integrating the Q-learning algorithm. Next, the objective resource allocation plans can be found by using a new feedback-control based decision-making algorithm. Using the RUBiS benchmark, simulation results demonstrate that the PCRA chooses the management operations of resource allocation with 93.7 percent correctness. Moreover, the PCRA achieves optimal/near-optimal performance, and it outperforms the classic ML-based and rule-based methods by 5<inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math><mml:mo>∼</mml:mo></mml:math><inline-graphic xlink:href="chen-ieq1-2992537.gif"/> </inline-formula>7% and 10<inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math><mml:mo>∼</mml:mo></mml:math><inline-graphic xlink:href="chen-ieq2-2992537.gif"/> </inline-formula>13%, respectively.]]></description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Cloud-based software services</subject><subject>Control systems</subject><subject>Decision making</subject><subject>Feedback control</subject><subject>Machine learning</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Q values</subject><subject>Q-value prediction</subject><subject>Quality of service</subject><subject>reinforcement learning</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Software</subject><subject>Software services</subject><subject>Workload</subject><subject>Workloads</subject><issn>2168-7161</issn><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsGjvgpcFz6k7m2ySPdbQqlBQ-oHHsNnMamqarbupIv7zbmkR5zJz-L03M4-QK2AjACZvl0Ux4oyzEZeSizg7IQMOaR5lkMLpv_mcDL1fs1C5AAlyQH7m6O3OaaTjtrVa9Y3tqLGOFq3d1dGd8ljThTX9l3JIF-g-G42ernzTvdJnh3Wj95Jo0qmqDegUsa6UfqeF7XpnW_rS9G90jk0XTDVusOvpDJXrgv6SnBnVehwe-wVZTSfL4iGaPd0_FuNZpDmHPuIi5xkkwmAqhYaKJ5nKc6YTlcWYcMM5IpcsNwqlTDSwWggwFRiGmRCZii_IzcF36-zHDn1frsPLXVhZ8jRLWJ5AKgPFDpR21nuHpty6ZqPcdwms3KdchpTLfcrlMeUguT5IGkT8w8MpKcQ8_gUQVHi7</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chen, Xing</creator><creator>Zhu, Fangning</creator><creator>Chen, Zheyi</creator><creator>Min, Geyong</creator><creator>Zheng, Xianghan</creator><creator>Rong, Chunming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9641-3528</orcidid><orcidid>https://orcid.org/0000-0002-8347-0539</orcidid><orcidid>https://orcid.org/0000-0002-6349-068X</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></search><sort><creationdate>20220401</creationdate><title>Resource Allocation for Cloud-Based Software Services Using Prediction-Enabled Feedback Control With Reinforcement Learning</title><author>Chen, Xing ; Zhu, Fangning ; Chen, Zheyi ; Min, Geyong ; Zheng, Xianghan ; Rong, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-25827145fe695c1b247a880c4a73e42f22ee2908fae994c10d551fb1f0e7557a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Cloud-based software services</topic><topic>Control systems</topic><topic>Decision making</topic><topic>Feedback control</topic><topic>Machine learning</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Q values</topic><topic>Q-value prediction</topic><topic>Quality of service</topic><topic>reinforcement learning</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Software</topic><topic>Software services</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Zhu, Fangning</creatorcontrib><creatorcontrib>Chen, Zheyi</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Zheng, Xianghan</creatorcontrib><creatorcontrib>Rong, Chunming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xing</au><au>Zhu, Fangning</au><au>Chen, Zheyi</au><au>Min, Geyong</au><au>Zheng, Xianghan</au><au>Rong, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource Allocation for Cloud-Based Software Services Using Prediction-Enabled Feedback Control With Reinforcement Learning</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>10</volume><issue>2</issue><spage>1117</spage><epage>1129</epage><pages>1117-1129</pages><issn>2168-7161</issn><eissn>2168-7161</eissn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract><![CDATA[With time-varying workloads and service requests, cloud-based software services necessitate adaptive resource allocation for guaranteeing Quality-of-Service (QoS) and reducing resource costs. However, due to the ever-changing system states, resource allocation for cloud-based software services faces huge challenges in dynamics and complexity. The traditional approaches mostly rely on expert knowledge or numerous iterations, which might lead to weak adaptiveness and extra costs. Moreover, existing RL-based methods target the environment with the fixed workload, and thus they are unable to effectively fit in the real-world scenarios with variable workloads. To address these important challenges, we propose a Prediction-enabled feedback Control with Reinforcement learning based resource Allocation (PCRA) method. First, a novel Q-value prediction model is designed to predict the values of management operations (by Q-values) at different system states. The model uses multiple prediction learners for making accurate Q-value prediction by integrating the Q-learning algorithm. Next, the objective resource allocation plans can be found by using a new feedback-control based decision-making algorithm. Using the RUBiS benchmark, simulation results demonstrate that the PCRA chooses the management operations of resource allocation with 93.7 percent correctness. Moreover, the PCRA achieves optimal/near-optimal performance, and it outperforms the classic ML-based and rule-based methods by 5<inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math><mml:mo>∼</mml:mo></mml:math><inline-graphic xlink:href="chen-ieq1-2992537.gif"/> </inline-formula>7% and 10<inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math><mml:mo>∼</mml:mo></mml:math><inline-graphic xlink:href="chen-ieq2-2992537.gif"/> </inline-formula>13%, respectively.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCC.2020.2992537</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9641-3528</orcidid><orcidid>https://orcid.org/0000-0002-8347-0539</orcidid><orcidid>https://orcid.org/0000-0002-6349-068X</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-7161
ispartof IEEE transactions on cloud computing, 2022-04, Vol.10 (2), p.1117-1129
issn 2168-7161
2168-7161
2372-0018
language eng
recordid cdi_ieee_primary_9086132
source IEEE Electronic Library (IEL)
subjects Algorithms
Cloud computing
Cloud-based software services
Control systems
Decision making
Feedback control
Machine learning
Prediction algorithms
Prediction models
Predictive models
Q values
Q-value prediction
Quality of service
reinforcement learning
Resource allocation
Resource management
Software
Software services
Workload
Workloads
title Resource Allocation for Cloud-Based Software Services Using Prediction-Enabled Feedback Control With Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20Allocation%20for%20Cloud-Based%20Software%20Services%20Using%20Prediction-Enabled%20Feedback%20Control%20With%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Chen,%20Xing&rft.date=2022-04-01&rft.volume=10&rft.issue=2&rft.spage=1117&rft.epage=1129&rft.pages=1117-1129&rft.issn=2168-7161&rft.eissn=2168-7161&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2020.2992537&rft_dat=%3Cproquest_RIE%3E2674084169%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674084169&rft_id=info:pmid/&rft_ieee_id=9086132&rfr_iscdi=true