Testing Scenario Library Generation for Connected and Automated Vehicles, Part II: Case Studies

Testing scenario library generation (TSLG) is a critical step for the development and deployment of connected and automated vehicles (CAVs). In Part I of this study, a general method for TSLG is proposed, and theoretical properties are investigated regarding the accuracy and efficiency of CAV evalua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-09, Vol.22 (9), p.5635-5647
Hauptverfasser: Feng, Shuo, Feng, Yiheng, Sun, Haowei, Bao, Shan, Zhang, Yi, Liu, Henry X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5647
container_issue 9
container_start_page 5635
container_title IEEE transactions on intelligent transportation systems
container_volume 22
creator Feng, Shuo
Feng, Yiheng
Sun, Haowei
Bao, Shan
Zhang, Yi
Liu, Henry X.
description Testing scenario library generation (TSLG) is a critical step for the development and deployment of connected and automated vehicles (CAVs). In Part I of this study, a general method for TSLG is proposed, and theoretical properties are investigated regarding the accuracy and efficiency of CAV evaluation. This paper aims to provide implementation examples and guidelines, and to enhance the proposed methodology under high-dimensional scenarios. Three typical cases, including cut-in, highway-exit, and car-following, are designed and studied in this paper. For each case, the process of library generation and CAV evaluation is elaborated. To address the challenges brought by high dimensionality, the proposed method is further enhanced by reinforcement learning technique. For all three cases, results show that the proposed method can accelerate the CAV evaluation process by multiple magnitudes with same evaluation accuracy, if compared with the on-road test method.
doi_str_mv 10.1109/TITS.2020.2988309
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9086089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9086089</ieee_id><sourcerecordid>2568070289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7e3a902160e7b44a16480afe43cf829878d2094e246bac7f59c29e4e275dba5a3</originalsourceid><addsrcrecordid>eNo9UNFKwzAUDaLgnH6A-BLw1c6bNGkT30bRWRgorPoa0vZWO7Z2Ju2Df2_Khk_3nss553IOIbcMFoyBfizyYrPgwGHBtVIx6DMyY1KqCIAl59PORaRBwiW58n4brkIyNiOmQD-03RfdVNhZ1_Z03ZbOul-6wg6dHdq-o03vaNZ3HVYD1tR2NV2OQ7-3E_rE77baoX-g79YNNM-faGY90s0w1i36a3LR2J3Hm9Ock4-X5yJ7jdZvqzxbrqOK63iIUoytBs4SwLQUwrJEKLANirhqVEiUqpqDFshFUtoqbaQOOgw4lXVppY3n5P7oe3D9zxgymW0_ui68NFwmClLgSgcWO7Iq13vvsDEH1-5DWsPATD2aqUcz9WhOPQbN3VHTIuI_X4NKIDj-AYSIbeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568070289</pqid></control><display><type>article</type><title>Testing Scenario Library Generation for Connected and Automated Vehicles, Part II: Case Studies</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Shuo ; Feng, Yiheng ; Sun, Haowei ; Bao, Shan ; Zhang, Yi ; Liu, Henry X.</creator><creatorcontrib>Feng, Shuo ; Feng, Yiheng ; Sun, Haowei ; Bao, Shan ; Zhang, Yi ; Liu, Henry X.</creatorcontrib><description>Testing scenario library generation (TSLG) is a critical step for the development and deployment of connected and automated vehicles (CAVs). In Part I of this study, a general method for TSLG is proposed, and theoretical properties are investigated regarding the accuracy and efficiency of CAV evaluation. This paper aims to provide implementation examples and guidelines, and to enhance the proposed methodology under high-dimensional scenarios. Three typical cases, including cut-in, highway-exit, and car-following, are designed and studied in this paper. For each case, the process of library generation and CAV evaluation is elaborated. To address the challenges brought by high dimensionality, the proposed method is further enhanced by reinforcement learning technique. For all three cases, results show that the proposed method can accelerate the CAV evaluation process by multiple magnitudes with same evaluation accuracy, if compared with the on-road test method.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.2988309</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Car following ; Connected and automated vehicles ; Estimation ; Frequency measurement ; functionality ; Indexes ; Libraries ; Linear programming ; reinforcement learning ; Road tests ; Safety ; Testing ; testing scenario library</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-09, Vol.22 (9), p.5635-5647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7e3a902160e7b44a16480afe43cf829878d2094e246bac7f59c29e4e275dba5a3</citedby><cites>FETCH-LOGICAL-c293t-7e3a902160e7b44a16480afe43cf829878d2094e246bac7f59c29e4e275dba5a3</cites><orcidid>0000-0001-5656-3222 ; 0000-0002-2117-4427 ; 0000-0001-5526-866X ; 0000-0002-3685-9920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9086089$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9086089$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Shuo</creatorcontrib><creatorcontrib>Feng, Yiheng</creatorcontrib><creatorcontrib>Sun, Haowei</creatorcontrib><creatorcontrib>Bao, Shan</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Liu, Henry X.</creatorcontrib><title>Testing Scenario Library Generation for Connected and Automated Vehicles, Part II: Case Studies</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Testing scenario library generation (TSLG) is a critical step for the development and deployment of connected and automated vehicles (CAVs). In Part I of this study, a general method for TSLG is proposed, and theoretical properties are investigated regarding the accuracy and efficiency of CAV evaluation. This paper aims to provide implementation examples and guidelines, and to enhance the proposed methodology under high-dimensional scenarios. Three typical cases, including cut-in, highway-exit, and car-following, are designed and studied in this paper. For each case, the process of library generation and CAV evaluation is elaborated. To address the challenges brought by high dimensionality, the proposed method is further enhanced by reinforcement learning technique. For all three cases, results show that the proposed method can accelerate the CAV evaluation process by multiple magnitudes with same evaluation accuracy, if compared with the on-road test method.</description><subject>Automation</subject><subject>Car following</subject><subject>Connected and automated vehicles</subject><subject>Estimation</subject><subject>Frequency measurement</subject><subject>functionality</subject><subject>Indexes</subject><subject>Libraries</subject><subject>Linear programming</subject><subject>reinforcement learning</subject><subject>Road tests</subject><subject>Safety</subject><subject>Testing</subject><subject>testing scenario library</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UNFKwzAUDaLgnH6A-BLw1c6bNGkT30bRWRgorPoa0vZWO7Z2Ju2Df2_Khk_3nss553IOIbcMFoyBfizyYrPgwGHBtVIx6DMyY1KqCIAl59PORaRBwiW58n4brkIyNiOmQD-03RfdVNhZ1_Z03ZbOul-6wg6dHdq-o03vaNZ3HVYD1tR2NV2OQ7-3E_rE77baoX-g79YNNM-faGY90s0w1i36a3LR2J3Hm9Ock4-X5yJ7jdZvqzxbrqOK63iIUoytBs4SwLQUwrJEKLANirhqVEiUqpqDFshFUtoqbaQOOgw4lXVppY3n5P7oe3D9zxgymW0_ui68NFwmClLgSgcWO7Iq13vvsDEH1-5DWsPATD2aqUcz9WhOPQbN3VHTIuI_X4NKIDj-AYSIbeY</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Feng, Shuo</creator><creator>Feng, Yiheng</creator><creator>Sun, Haowei</creator><creator>Bao, Shan</creator><creator>Zhang, Yi</creator><creator>Liu, Henry X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5656-3222</orcidid><orcidid>https://orcid.org/0000-0002-2117-4427</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0000-0002-3685-9920</orcidid></search><sort><creationdate>20210901</creationdate><title>Testing Scenario Library Generation for Connected and Automated Vehicles, Part II: Case Studies</title><author>Feng, Shuo ; Feng, Yiheng ; Sun, Haowei ; Bao, Shan ; Zhang, Yi ; Liu, Henry X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7e3a902160e7b44a16480afe43cf829878d2094e246bac7f59c29e4e275dba5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Car following</topic><topic>Connected and automated vehicles</topic><topic>Estimation</topic><topic>Frequency measurement</topic><topic>functionality</topic><topic>Indexes</topic><topic>Libraries</topic><topic>Linear programming</topic><topic>reinforcement learning</topic><topic>Road tests</topic><topic>Safety</topic><topic>Testing</topic><topic>testing scenario library</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Shuo</creatorcontrib><creatorcontrib>Feng, Yiheng</creatorcontrib><creatorcontrib>Sun, Haowei</creatorcontrib><creatorcontrib>Bao, Shan</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Liu, Henry X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Shuo</au><au>Feng, Yiheng</au><au>Sun, Haowei</au><au>Bao, Shan</au><au>Zhang, Yi</au><au>Liu, Henry X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing Scenario Library Generation for Connected and Automated Vehicles, Part II: Case Studies</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>22</volume><issue>9</issue><spage>5635</spage><epage>5647</epage><pages>5635-5647</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Testing scenario library generation (TSLG) is a critical step for the development and deployment of connected and automated vehicles (CAVs). In Part I of this study, a general method for TSLG is proposed, and theoretical properties are investigated regarding the accuracy and efficiency of CAV evaluation. This paper aims to provide implementation examples and guidelines, and to enhance the proposed methodology under high-dimensional scenarios. Three typical cases, including cut-in, highway-exit, and car-following, are designed and studied in this paper. For each case, the process of library generation and CAV evaluation is elaborated. To address the challenges brought by high dimensionality, the proposed method is further enhanced by reinforcement learning technique. For all three cases, results show that the proposed method can accelerate the CAV evaluation process by multiple magnitudes with same evaluation accuracy, if compared with the on-road test method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.2988309</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5656-3222</orcidid><orcidid>https://orcid.org/0000-0002-2117-4427</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0000-0002-3685-9920</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2021-09, Vol.22 (9), p.5635-5647
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_9086089
source IEEE Electronic Library (IEL)
subjects Automation
Car following
Connected and automated vehicles
Estimation
Frequency measurement
functionality
Indexes
Libraries
Linear programming
reinforcement learning
Road tests
Safety
Testing
testing scenario library
title Testing Scenario Library Generation for Connected and Automated Vehicles, Part II: Case Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20Scenario%20Library%20Generation%20for%20Connected%20and%20Automated%20Vehicles,%20Part%20II:%20Case%20Studies&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Feng,%20Shuo&rft.date=2021-09-01&rft.volume=22&rft.issue=9&rft.spage=5635&rft.epage=5647&rft.pages=5635-5647&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.2988309&rft_dat=%3Cproquest_RIE%3E2568070289%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568070289&rft_id=info:pmid/&rft_ieee_id=9086089&rfr_iscdi=true