A Hybrid Method for Mathematical Expression Detection in Scientific Document Images

Mathematical expressions have been widely used in scientific documents. In order to analyze the documents, automatic detection of mathematical expressions is a crucial step. The paper presents a unified system for the detection of mathematical expressions including both inline and isolated expressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.83663-83684
Hauptverfasser: Phong, Bui Hai, Hoang, Thang Manh, Le, Thi-Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83684
container_issue
container_start_page 83663
container_title IEEE access
container_volume 8
creator Phong, Bui Hai
Hoang, Thang Manh
Le, Thi-Lan
description Mathematical expressions have been widely used in scientific documents. In order to analyze the documents, automatic detection of mathematical expressions is a crucial step. The paper presents a unified system for the detection of mathematical expressions including both inline and isolated expressions in scientific document images that usually consist of heterogeneous components (e.g., figures, tables, text and expressions). In the system, a hybrid method of two stages is proposed for the effective detection of mathematical expressions. First, the layout analysis of entire document images is introduced to improve the accuracy of text line and word segmentation. Then, both isolated and inline expressions in document images are detected. Both hand-crafted and deep learning features are extensively investigated and combined to improve the detection accuracy. Furthermore, a generic performance metric is applied to evaluate the system comprehensively. The proposed method has been evaluated on two public benchmark datasets (Marmot and GTDB). The obtained accuracies of isolated and inline expressions in the Marmot dataset are 91.18% and 81.35% while those in the GTDB dataset are 89.51% and 80.20%, respectively. The performance comparison is carried out with the conventional methods to show the outstanding effectiveness of the proposed system. Moreover, extensive experiments have been performed in order to point out the effect of document image resolution and post processing techniques on mathematical expression detection.
doi_str_mv 10.1109/ACCESS.2020.2992067
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9085376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9085376</ieee_id><doaj_id>oai_doaj_org_article_bd0bccf1c85d4421bc32cea28ba4ad62</doaj_id><sourcerecordid>2454092897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a5d3808c26c3fbb284b0f3ac9f4c219440e914d02b714d630002d8859f983fba3</originalsourceid><addsrcrecordid>eNpNUU1rAjEQXUoLFesv8BLoWZuv3U2OorYKSg-255BPjejGJivUf9_YLdK5vJlh3psZXlEMERwjBPnLZDqdbzZjDDEcY84xrOq7oodRxUekJNX9v_yxGKS0hzlYbpV1r9hMwOKiojdgbdtdMMCFCNay3dmjbL2WBzD_PkWbkg8NmNnW6vaa-QZstLdN653XYBb0-ZgLsDzKrU1PxYOTh2QHf9gvPl_nH9PFaPX-tpxOViNNIWtHsjSEQaZxpYlTCjOqoCNSc0c1RpxSaDmiBmJVZ6hIvhobxkruOMsESfrFstM1Qe7FKfqjjBcRpBe_jRC3Qsb8xMEKZaDS2iHNSkMpRkoTrK3ETEkqTYWz1nOndYrh62xTK_bhHJt8vsC0pJBjxus8RbopHUNK0brbVgTF1QzRmSGuZog_MzJr2LG8tfbG4JCVpK7ID79ShQo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454092897</pqid></control><display><type>article</type><title>A Hybrid Method for Mathematical Expression Detection in Scientific Document Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Phong, Bui Hai ; Hoang, Thang Manh ; Le, Thi-Lan</creator><creatorcontrib>Phong, Bui Hai ; Hoang, Thang Manh ; Le, Thi-Lan</creatorcontrib><description>Mathematical expressions have been widely used in scientific documents. In order to analyze the documents, automatic detection of mathematical expressions is a crucial step. The paper presents a unified system for the detection of mathematical expressions including both inline and isolated expressions in scientific document images that usually consist of heterogeneous components (e.g., figures, tables, text and expressions). In the system, a hybrid method of two stages is proposed for the effective detection of mathematical expressions. First, the layout analysis of entire document images is introduced to improve the accuracy of text line and word segmentation. Then, both isolated and inline expressions in document images are detected. Both hand-crafted and deep learning features are extensively investigated and combined to improve the detection accuracy. Furthermore, a generic performance metric is applied to evaluate the system comprehensively. The proposed method has been evaluated on two public benchmark datasets (Marmot and GTDB). The obtained accuracies of isolated and inline expressions in the Marmot dataset are 91.18% and 81.35% while those in the GTDB dataset are 89.51% and 80.20%, respectively. The performance comparison is carried out with the conventional methods to show the outstanding effectiveness of the proposed system. Moreover, extensive experiments have been performed in order to point out the effect of document image resolution and post processing techniques on mathematical expression detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2992067</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Datasets ; document analysis ; Feature extraction ; fusion technique ; Hybrid systems ; Image resolution ; Image segmentation ; Layout ; machine learning ; Mathematical analysis ; Mathematical expression detection ; Measurement ; neural network ; Optical character recognition software ; Text analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.83663-83684</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a5d3808c26c3fbb284b0f3ac9f4c219440e914d02b714d630002d8859f983fba3</citedby><cites>FETCH-LOGICAL-c408t-a5d3808c26c3fbb284b0f3ac9f4c219440e914d02b714d630002d8859f983fba3</cites><orcidid>0000-0003-3555-5682 ; 0000-0001-9541-3905 ; 0000-0002-0542-0069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9085376$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Phong, Bui Hai</creatorcontrib><creatorcontrib>Hoang, Thang Manh</creatorcontrib><creatorcontrib>Le, Thi-Lan</creatorcontrib><title>A Hybrid Method for Mathematical Expression Detection in Scientific Document Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>Mathematical expressions have been widely used in scientific documents. In order to analyze the documents, automatic detection of mathematical expressions is a crucial step. The paper presents a unified system for the detection of mathematical expressions including both inline and isolated expressions in scientific document images that usually consist of heterogeneous components (e.g., figures, tables, text and expressions). In the system, a hybrid method of two stages is proposed for the effective detection of mathematical expressions. First, the layout analysis of entire document images is introduced to improve the accuracy of text line and word segmentation. Then, both isolated and inline expressions in document images are detected. Both hand-crafted and deep learning features are extensively investigated and combined to improve the detection accuracy. Furthermore, a generic performance metric is applied to evaluate the system comprehensively. The proposed method has been evaluated on two public benchmark datasets (Marmot and GTDB). The obtained accuracies of isolated and inline expressions in the Marmot dataset are 91.18% and 81.35% while those in the GTDB dataset are 89.51% and 80.20%, respectively. The performance comparison is carried out with the conventional methods to show the outstanding effectiveness of the proposed system. Moreover, extensive experiments have been performed in order to point out the effect of document image resolution and post processing techniques on mathematical expression detection.</description><subject>Datasets</subject><subject>document analysis</subject><subject>Feature extraction</subject><subject>fusion technique</subject><subject>Hybrid systems</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Layout</subject><subject>machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical expression detection</subject><subject>Measurement</subject><subject>neural network</subject><subject>Optical character recognition software</subject><subject>Text analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rAjEQXUoLFesv8BLoWZuv3U2OorYKSg-255BPjejGJivUf9_YLdK5vJlh3psZXlEMERwjBPnLZDqdbzZjDDEcY84xrOq7oodRxUekJNX9v_yxGKS0hzlYbpV1r9hMwOKiojdgbdtdMMCFCNay3dmjbL2WBzD_PkWbkg8NmNnW6vaa-QZstLdN653XYBb0-ZgLsDzKrU1PxYOTh2QHf9gvPl_nH9PFaPX-tpxOViNNIWtHsjSEQaZxpYlTCjOqoCNSc0c1RpxSaDmiBmJVZ6hIvhobxkruOMsESfrFstM1Qe7FKfqjjBcRpBe_jRC3Qsb8xMEKZaDS2iHNSkMpRkoTrK3ETEkqTYWz1nOndYrh62xTK_bhHJt8vsC0pJBjxus8RbopHUNK0brbVgTF1QzRmSGuZog_MzJr2LG8tfbG4JCVpK7ID79ShQo</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Phong, Bui Hai</creator><creator>Hoang, Thang Manh</creator><creator>Le, Thi-Lan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3555-5682</orcidid><orcidid>https://orcid.org/0000-0001-9541-3905</orcidid><orcidid>https://orcid.org/0000-0002-0542-0069</orcidid></search><sort><creationdate>2020</creationdate><title>A Hybrid Method for Mathematical Expression Detection in Scientific Document Images</title><author>Phong, Bui Hai ; Hoang, Thang Manh ; Le, Thi-Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a5d3808c26c3fbb284b0f3ac9f4c219440e914d02b714d630002d8859f983fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Datasets</topic><topic>document analysis</topic><topic>Feature extraction</topic><topic>fusion technique</topic><topic>Hybrid systems</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Layout</topic><topic>machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical expression detection</topic><topic>Measurement</topic><topic>neural network</topic><topic>Optical character recognition software</topic><topic>Text analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phong, Bui Hai</creatorcontrib><creatorcontrib>Hoang, Thang Manh</creatorcontrib><creatorcontrib>Le, Thi-Lan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phong, Bui Hai</au><au>Hoang, Thang Manh</au><au>Le, Thi-Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Method for Mathematical Expression Detection in Scientific Document Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>83663</spage><epage>83684</epage><pages>83663-83684</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Mathematical expressions have been widely used in scientific documents. In order to analyze the documents, automatic detection of mathematical expressions is a crucial step. The paper presents a unified system for the detection of mathematical expressions including both inline and isolated expressions in scientific document images that usually consist of heterogeneous components (e.g., figures, tables, text and expressions). In the system, a hybrid method of two stages is proposed for the effective detection of mathematical expressions. First, the layout analysis of entire document images is introduced to improve the accuracy of text line and word segmentation. Then, both isolated and inline expressions in document images are detected. Both hand-crafted and deep learning features are extensively investigated and combined to improve the detection accuracy. Furthermore, a generic performance metric is applied to evaluate the system comprehensively. The proposed method has been evaluated on two public benchmark datasets (Marmot and GTDB). The obtained accuracies of isolated and inline expressions in the Marmot dataset are 91.18% and 81.35% while those in the GTDB dataset are 89.51% and 80.20%, respectively. The performance comparison is carried out with the conventional methods to show the outstanding effectiveness of the proposed system. Moreover, extensive experiments have been performed in order to point out the effect of document image resolution and post processing techniques on mathematical expression detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2992067</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3555-5682</orcidid><orcidid>https://orcid.org/0000-0001-9541-3905</orcidid><orcidid>https://orcid.org/0000-0002-0542-0069</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.83663-83684
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9085376
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Datasets
document analysis
Feature extraction
fusion technique
Hybrid systems
Image resolution
Image segmentation
Layout
machine learning
Mathematical analysis
Mathematical expression detection
Measurement
neural network
Optical character recognition software
Text analysis
title A Hybrid Method for Mathematical Expression Detection in Scientific Document Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Method%20for%20Mathematical%20Expression%20Detection%20in%20Scientific%20Document%20Images&rft.jtitle=IEEE%20access&rft.au=Phong,%20Bui%20Hai&rft.date=2020&rft.volume=8&rft.spage=83663&rft.epage=83684&rft.pages=83663-83684&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2992067&rft_dat=%3Cproquest_ieee_%3E2454092897%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454092897&rft_id=info:pmid/&rft_ieee_id=9085376&rft_doaj_id=oai_doaj_org_article_bd0bccf1c85d4421bc32cea28ba4ad62&rfr_iscdi=true