Improved Binary Sailfish Optimizer Based on Adaptive β-Hill Climbing for Feature Selection
Feature selection (FS), an important pre-processing step in the fields of machine learning and data mining, has immense impact on the outcome of the corresponding learning models. Basically, it aims to remove all possible irrelevant as well as redundant features from a feature vector, thereby enhanc...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.83548-83560 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83560 |
---|---|
container_issue | |
container_start_page | 83548 |
container_title | IEEE access |
container_volume | 8 |
creator | Ghosh, Kushal Kanti Ahmed, Shameem Singh, Pawan Kumar Geem, Zong Woo Sarkar, Ram |
description | Feature selection (FS), an important pre-processing step in the fields of machine learning and data mining, has immense impact on the outcome of the corresponding learning models. Basically, it aims to remove all possible irrelevant as well as redundant features from a feature vector, thereby enhancing the performance of the overall prediction or classification model. Over the years, meta-heuristic optimization techniques have been applied for FS, as these are able to overcome the limitations of traditional optimization approaches. In this work, we introduce a binary variant of the recently-proposed Sailfish Optimizer (SFO), named as Binary Sailfish (BSF) optimizer, to solve FS problems. Sigmoid transfer function is utilized here to map the continuous search space of SFO to a binary one. In order to improve the exploitation ability of the BSF optimizer, we amalgamate another recently proposed meta-heuristic algorithm, namely adaptive \beta -hill climbing ( \text{A}\beta HC) with BSF optimizer. The proposed BSF and \text{A}\beta BSF algorithms are applied on 18 standard UCI datasets and compared with 10 state-of-the-art meta-heuristic FS methods. The results demonstrate the superiority of both BSF and \text{A}\beta BSF algorithms in solving FS problems. The source code of this work is available in https://github.com/Rangerix/MetaheuristicOptimization . |
doi_str_mv | 10.1109/ACCESS.2020.2991543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9082591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9082591</ieee_id><doaj_id>oai_doaj_org_article_b5843dde1cdb4e73b2f048c77a3965b5</doaj_id><sourcerecordid>2454092830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3233-cbfbe93246761d653acdb405de64e5c93dc585d271ecbd5265169fece2f91dba3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVMAXcLHEOcWPOImPJQJaqRKHwomD5ccGXCVxcdJK8Fl8CN-ES6oKX2zN7szsepLkmuApIVjczqrqfrWaUkzxlApBeMZOkgkluUgZZ_npv_d5ctX3axxPGSFeTJLXRbsJfgcW3blOhU-0Uq6pXf-OnjaDa90XBHSn-lj3HZpZFcEdoJ_vdO6aBlWNa7Xr3lDtA3oANWwDoBU0YAbnu8vkrFZND1eH-yJ5ebh_rubp8ulxUc2WqWGUsdToWoNgNMuLnNicM2WszjC3kGfAjWDW8JJbWhAw2nKa8zh7DQZoLYjVil0ki1HXerWWm-DauIj0ysk_wIc3qcLgTANS8zJj1gLZW0DBNK1xVpqiUEzkXPOodTNqxV_52EI_yLXfhi6OL2nGMyxoyXDsYmOXCb7vA9RHV4LlPhQ5hiL3ochDKJF1PbIcABwZApeUC8J-AfdYiOk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454092830</pqid></control><display><type>article</type><title>Improved Binary Sailfish Optimizer Based on Adaptive β-Hill Climbing for Feature Selection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ghosh, Kushal Kanti ; Ahmed, Shameem ; Singh, Pawan Kumar ; Geem, Zong Woo ; Sarkar, Ram</creator><creatorcontrib>Ghosh, Kushal Kanti ; Ahmed, Shameem ; Singh, Pawan Kumar ; Geem, Zong Woo ; Sarkar, Ram</creatorcontrib><description><![CDATA[Feature selection (FS), an important pre-processing step in the fields of machine learning and data mining, has immense impact on the outcome of the corresponding learning models. Basically, it aims to remove all possible irrelevant as well as redundant features from a feature vector, thereby enhancing the performance of the overall prediction or classification model. Over the years, meta-heuristic optimization techniques have been applied for FS, as these are able to overcome the limitations of traditional optimization approaches. In this work, we introduce a binary variant of the recently-proposed Sailfish Optimizer (SFO), named as Binary Sailfish (BSF) optimizer, to solve FS problems. Sigmoid transfer function is utilized here to map the continuous search space of SFO to a binary one. In order to improve the exploitation ability of the BSF optimizer, we amalgamate another recently proposed meta-heuristic algorithm, namely adaptive <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-hill climbing (<inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>HC) with BSF optimizer. The proposed BSF and <inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>BSF algorithms are applied on 18 standard UCI datasets and compared with 10 state-of-the-art meta-heuristic FS methods. The results demonstrate the superiority of both BSF and <inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>BSF algorithms in solving FS problems. The source code of this work is available in https://github.com/Rangerix/MetaheuristicOptimization .]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2991543</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">β -hill climbing ; Adaptive algorithms ; Algorithms ; Binary sailfish optimizer ; Data mining ; Feature extraction ; Feature selection ; Heuristic ; Heuristic algorithms ; Heuristic methods ; hybrid optimization ; Machine learning ; Machine learning algorithms ; Optimization ; Optimization techniques ; Sociology ; Source code ; Statistics ; Transfer functions ; UCI dataset</subject><ispartof>IEEE access, 2020, Vol.8, p.83548-83560</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3233-cbfbe93246761d653acdb405de64e5c93dc585d271ecbd5265169fece2f91dba3</citedby><cites>FETCH-LOGICAL-c3233-cbfbe93246761d653acdb405de64e5c93dc585d271ecbd5265169fece2f91dba3</cites><orcidid>0000-0003-0929-5928 ; 0000-0002-0370-5562 ; 0000-0003-1795-3361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9082591$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ghosh, Kushal Kanti</creatorcontrib><creatorcontrib>Ahmed, Shameem</creatorcontrib><creatorcontrib>Singh, Pawan Kumar</creatorcontrib><creatorcontrib>Geem, Zong Woo</creatorcontrib><creatorcontrib>Sarkar, Ram</creatorcontrib><title>Improved Binary Sailfish Optimizer Based on Adaptive β-Hill Climbing for Feature Selection</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Feature selection (FS), an important pre-processing step in the fields of machine learning and data mining, has immense impact on the outcome of the corresponding learning models. Basically, it aims to remove all possible irrelevant as well as redundant features from a feature vector, thereby enhancing the performance of the overall prediction or classification model. Over the years, meta-heuristic optimization techniques have been applied for FS, as these are able to overcome the limitations of traditional optimization approaches. In this work, we introduce a binary variant of the recently-proposed Sailfish Optimizer (SFO), named as Binary Sailfish (BSF) optimizer, to solve FS problems. Sigmoid transfer function is utilized here to map the continuous search space of SFO to a binary one. In order to improve the exploitation ability of the BSF optimizer, we amalgamate another recently proposed meta-heuristic algorithm, namely adaptive <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-hill climbing (<inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>HC) with BSF optimizer. The proposed BSF and <inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>BSF algorithms are applied on 18 standard UCI datasets and compared with 10 state-of-the-art meta-heuristic FS methods. The results demonstrate the superiority of both BSF and <inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>BSF algorithms in solving FS problems. The source code of this work is available in https://github.com/Rangerix/MetaheuristicOptimization .]]></description><subject>adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">β -hill climbing</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Binary sailfish optimizer</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>hybrid optimization</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Sociology</subject><subject>Source code</subject><subject>Statistics</subject><subject>Transfer functions</subject><subject>UCI dataset</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVMAXcLHEOcWPOImPJQJaqRKHwomD5ccGXCVxcdJK8Fl8CN-ES6oKX2zN7szsepLkmuApIVjczqrqfrWaUkzxlApBeMZOkgkluUgZZ_npv_d5ctX3axxPGSFeTJLXRbsJfgcW3blOhU-0Uq6pXf-OnjaDa90XBHSn-lj3HZpZFcEdoJ_vdO6aBlWNa7Xr3lDtA3oANWwDoBU0YAbnu8vkrFZND1eH-yJ5ebh_rubp8ulxUc2WqWGUsdToWoNgNMuLnNicM2WszjC3kGfAjWDW8JJbWhAw2nKa8zh7DQZoLYjVil0ki1HXerWWm-DauIj0ysk_wIc3qcLgTANS8zJj1gLZW0DBNK1xVpqiUEzkXPOodTNqxV_52EI_yLXfhi6OL2nGMyxoyXDsYmOXCb7vA9RHV4LlPhQ5hiL3ochDKJF1PbIcABwZApeUC8J-AfdYiOk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ghosh, Kushal Kanti</creator><creator>Ahmed, Shameem</creator><creator>Singh, Pawan Kumar</creator><creator>Geem, Zong Woo</creator><creator>Sarkar, Ram</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0929-5928</orcidid><orcidid>https://orcid.org/0000-0002-0370-5562</orcidid><orcidid>https://orcid.org/0000-0003-1795-3361</orcidid></search><sort><creationdate>2020</creationdate><title>Improved Binary Sailfish Optimizer Based on Adaptive β-Hill Climbing for Feature Selection</title><author>Ghosh, Kushal Kanti ; Ahmed, Shameem ; Singh, Pawan Kumar ; Geem, Zong Woo ; Sarkar, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3233-cbfbe93246761d653acdb405de64e5c93dc585d271ecbd5265169fece2f91dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">β -hill climbing</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Binary sailfish optimizer</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>hybrid optimization</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Sociology</topic><topic>Source code</topic><topic>Statistics</topic><topic>Transfer functions</topic><topic>UCI dataset</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Kushal Kanti</creatorcontrib><creatorcontrib>Ahmed, Shameem</creatorcontrib><creatorcontrib>Singh, Pawan Kumar</creatorcontrib><creatorcontrib>Geem, Zong Woo</creatorcontrib><creatorcontrib>Sarkar, Ram</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Kushal Kanti</au><au>Ahmed, Shameem</au><au>Singh, Pawan Kumar</au><au>Geem, Zong Woo</au><au>Sarkar, Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Binary Sailfish Optimizer Based on Adaptive β-Hill Climbing for Feature Selection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>83548</spage><epage>83560</epage><pages>83548-83560</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Feature selection (FS), an important pre-processing step in the fields of machine learning and data mining, has immense impact on the outcome of the corresponding learning models. Basically, it aims to remove all possible irrelevant as well as redundant features from a feature vector, thereby enhancing the performance of the overall prediction or classification model. Over the years, meta-heuristic optimization techniques have been applied for FS, as these are able to overcome the limitations of traditional optimization approaches. In this work, we introduce a binary variant of the recently-proposed Sailfish Optimizer (SFO), named as Binary Sailfish (BSF) optimizer, to solve FS problems. Sigmoid transfer function is utilized here to map the continuous search space of SFO to a binary one. In order to improve the exploitation ability of the BSF optimizer, we amalgamate another recently proposed meta-heuristic algorithm, namely adaptive <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-hill climbing (<inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>HC) with BSF optimizer. The proposed BSF and <inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>BSF algorithms are applied on 18 standard UCI datasets and compared with 10 state-of-the-art meta-heuristic FS methods. The results demonstrate the superiority of both BSF and <inline-formula> <tex-math notation="LaTeX">\text{A}\beta </tex-math></inline-formula>BSF algorithms in solving FS problems. The source code of this work is available in https://github.com/Rangerix/MetaheuristicOptimization .]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2991543</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0929-5928</orcidid><orcidid>https://orcid.org/0000-0002-0370-5562</orcidid><orcidid>https://orcid.org/0000-0003-1795-3361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.83548-83560 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9082591 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">β -hill climbing Adaptive algorithms Algorithms Binary sailfish optimizer Data mining Feature extraction Feature selection Heuristic Heuristic algorithms Heuristic methods hybrid optimization Machine learning Machine learning algorithms Optimization Optimization techniques Sociology Source code Statistics Transfer functions UCI dataset |
title | Improved Binary Sailfish Optimizer Based on Adaptive β-Hill Climbing for Feature Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Binary%20Sailfish%20Optimizer%20Based%20on%20Adaptive%20%CE%B2-Hill%20Climbing%20for%20Feature%20Selection&rft.jtitle=IEEE%20access&rft.au=Ghosh,%20Kushal%20Kanti&rft.date=2020&rft.volume=8&rft.spage=83548&rft.epage=83560&rft.pages=83548-83560&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2991543&rft_dat=%3Cproquest_ieee_%3E2454092830%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454092830&rft_id=info:pmid/&rft_ieee_id=9082591&rft_doaj_id=oai_doaj_org_article_b5843dde1cdb4e73b2f048c77a3965b5&rfr_iscdi=true |