A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene
Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and r...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2020-09, Vol.7 (9), p.8410-8418 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8418 |
---|---|
container_issue | 9 |
container_start_page | 8410 |
container_title | IEEE internet of things journal |
container_volume | 7 |
creator | Cheng, Jiujun Yuan, Guiyuan Zhou, MengChu Gao, Shangce Huang, Zhenhua Liu, Cong |
description | Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and reveal the relationship among network connectivity, node density, and a communication range. Because of various influencing factors and changing communication states, most of their results are not applicable to VANET in an urban scene. In this article, we propose a connectivity prediction-based dynamic clustering (DC) model for VANET in an urban scene. First, we introduce a connectivity prediction method (CP) according to the features of a vehicle node and relative features among vehicle nodes. Then, we formulate a DC model based on connectivity among vehicle nodes and vehicle node density. Finally, we present a DC model-based routing method to realize stable communications among vehicle nodes. The experimental results show that the proposed CP can achieve a lower error rate than the geographic routing based on predictive locations and multilayer perceptron. The proposed routing method can achieve lower end-to-end latency and higher delivery rate than the greedy perimeter stateless routing and modified distributed and mobility-adaptive clustering-based methods. |
doi_str_mv | 10.1109/JIOT.2020.2990935 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9080073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9080073</ieee_id><sourcerecordid>2444610650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-db38fc2fe89b8808f7c44bb84c838d654bda9f5202da23707ad64bb2b3048fed3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOZ-gHgT8LrzNEnb5HLWqZPpBDtvQ5oP6djSmXTC_r0ZG-LN-eC87zmcJ0muMxhnGfC7l9miHmPAMMacAyf5WTLABJcpLQp8_q--TEYhrAAg2vKMF4OknqCqc86ovv1p-3367o1uY9O59F4Go9HD3slNq1C13oXe-NZ9oddOmzWynUefk7dpjVqHpENL38T4oYwzV8mFletgRqc8TJaP07p6TueLp1k1maeKAu5T3RBmFbaG8YYxYLZUlDYNo4oRpoucNlpym8fHtMSkhFLqIs5xQ4AyazQZJrfHvVvffe9M6MWq23kXTwpMKS0yKHKIquyoUr4LwRsrtr7dSL8XGYgDP3HgJw78xIlf9NwcPa0x5k_PgQGUhPwCCWZqsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444610650</pqid></control><display><type>article</type><title>A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Jiujun ; Yuan, Guiyuan ; Zhou, MengChu ; Gao, Shangce ; Huang, Zhenhua ; Liu, Cong</creator><creatorcontrib>Cheng, Jiujun ; Yuan, Guiyuan ; Zhou, MengChu ; Gao, Shangce ; Huang, Zhenhua ; Liu, Cong</creatorcontrib><description>Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and reveal the relationship among network connectivity, node density, and a communication range. Because of various influencing factors and changing communication states, most of their results are not applicable to VANET in an urban scene. In this article, we propose a connectivity prediction-based dynamic clustering (DC) model for VANET in an urban scene. First, we introduce a connectivity prediction method (CP) according to the features of a vehicle node and relative features among vehicle nodes. Then, we formulate a DC model based on connectivity among vehicle nodes and vehicle node density. Finally, we present a DC model-based routing method to realize stable communications among vehicle nodes. The experimental results show that the proposed CP can achieve a lower error rate than the geographic routing based on predictive locations and multilayer perceptron. The proposed routing method can achieve lower end-to-end latency and higher delivery rate than the greedy perimeter stateless routing and modified distributed and mobility-adaptive clustering-based methods.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2990935</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; Connectivity ; Connectivity prediction ; Density ; dynamic clustering (DC) ; Internet of Things ; Internet of Vehicles ; Mobile ad hoc networks ; Multilayer perceptrons ; Nodes ; Null value ; Roads ; Routing ; Suburban areas ; urban scene ; Vehicle dynamics ; vehicular <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ad hoc network (VANET) ; Vehicular ad hoc networks</subject><ispartof>IEEE internet of things journal, 2020-09, Vol.7 (9), p.8410-8418</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-db38fc2fe89b8808f7c44bb84c838d654bda9f5202da23707ad64bb2b3048fed3</citedby><cites>FETCH-LOGICAL-c402t-db38fc2fe89b8808f7c44bb84c838d654bda9f5202da23707ad64bb2b3048fed3</cites><orcidid>0000-0002-5999-2126 ; 0000-0001-5042-3261 ; 0000-0001-8814-6423 ; 0000-0001-5176-4762 ; 0000-0002-5408-8752 ; 0000-0001-8659-4062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9080073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9080073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Jiujun</creatorcontrib><creatorcontrib>Yuan, Guiyuan</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Gao, Shangce</creatorcontrib><creatorcontrib>Huang, Zhenhua</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><title>A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and reveal the relationship among network connectivity, node density, and a communication range. Because of various influencing factors and changing communication states, most of their results are not applicable to VANET in an urban scene. In this article, we propose a connectivity prediction-based dynamic clustering (DC) model for VANET in an urban scene. First, we introduce a connectivity prediction method (CP) according to the features of a vehicle node and relative features among vehicle nodes. Then, we formulate a DC model based on connectivity among vehicle nodes and vehicle node density. Finally, we present a DC model-based routing method to realize stable communications among vehicle nodes. The experimental results show that the proposed CP can achieve a lower error rate than the geographic routing based on predictive locations and multilayer perceptron. The proposed routing method can achieve lower end-to-end latency and higher delivery rate than the greedy perimeter stateless routing and modified distributed and mobility-adaptive clustering-based methods.</description><subject>Clustering</subject><subject>Connectivity</subject><subject>Connectivity prediction</subject><subject>Density</subject><subject>dynamic clustering (DC)</subject><subject>Internet of Things</subject><subject>Internet of Vehicles</subject><subject>Mobile ad hoc networks</subject><subject>Multilayer perceptrons</subject><subject>Nodes</subject><subject>Null value</subject><subject>Roads</subject><subject>Routing</subject><subject>Suburban areas</subject><subject>urban scene</subject><subject>Vehicle dynamics</subject><subject>vehicular <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ad hoc network (VANET)</subject><subject>Vehicular ad hoc networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOOZ-gHgT8LrzNEnb5HLWqZPpBDtvQ5oP6djSmXTC_r0ZG-LN-eC87zmcJ0muMxhnGfC7l9miHmPAMMacAyf5WTLABJcpLQp8_q--TEYhrAAg2vKMF4OknqCqc86ovv1p-3367o1uY9O59F4Go9HD3slNq1C13oXe-NZ9oddOmzWynUefk7dpjVqHpENL38T4oYwzV8mFletgRqc8TJaP07p6TueLp1k1maeKAu5T3RBmFbaG8YYxYLZUlDYNo4oRpoucNlpym8fHtMSkhFLqIs5xQ4AyazQZJrfHvVvffe9M6MWq23kXTwpMKS0yKHKIquyoUr4LwRsrtr7dSL8XGYgDP3HgJw78xIlf9NwcPa0x5k_PgQGUhPwCCWZqsA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Cheng, Jiujun</creator><creator>Yuan, Guiyuan</creator><creator>Zhou, MengChu</creator><creator>Gao, Shangce</creator><creator>Huang, Zhenhua</creator><creator>Liu, Cong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5999-2126</orcidid><orcidid>https://orcid.org/0000-0001-5042-3261</orcidid><orcidid>https://orcid.org/0000-0001-8814-6423</orcidid><orcidid>https://orcid.org/0000-0001-5176-4762</orcidid><orcidid>https://orcid.org/0000-0002-5408-8752</orcidid><orcidid>https://orcid.org/0000-0001-8659-4062</orcidid></search><sort><creationdate>20200901</creationdate><title>A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene</title><author>Cheng, Jiujun ; Yuan, Guiyuan ; Zhou, MengChu ; Gao, Shangce ; Huang, Zhenhua ; Liu, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-db38fc2fe89b8808f7c44bb84c838d654bda9f5202da23707ad64bb2b3048fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Connectivity</topic><topic>Connectivity prediction</topic><topic>Density</topic><topic>dynamic clustering (DC)</topic><topic>Internet of Things</topic><topic>Internet of Vehicles</topic><topic>Mobile ad hoc networks</topic><topic>Multilayer perceptrons</topic><topic>Nodes</topic><topic>Null value</topic><topic>Roads</topic><topic>Routing</topic><topic>Suburban areas</topic><topic>urban scene</topic><topic>Vehicle dynamics</topic><topic>vehicular <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ad hoc network (VANET)</topic><topic>Vehicular ad hoc networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jiujun</creatorcontrib><creatorcontrib>Yuan, Guiyuan</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Gao, Shangce</creatorcontrib><creatorcontrib>Huang, Zhenhua</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Jiujun</au><au>Yuan, Guiyuan</au><au>Zhou, MengChu</au><au>Gao, Shangce</au><au>Huang, Zhenhua</au><au>Liu, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>7</volume><issue>9</issue><spage>8410</spage><epage>8418</epage><pages>8410-8418</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and reveal the relationship among network connectivity, node density, and a communication range. Because of various influencing factors and changing communication states, most of their results are not applicable to VANET in an urban scene. In this article, we propose a connectivity prediction-based dynamic clustering (DC) model for VANET in an urban scene. First, we introduce a connectivity prediction method (CP) according to the features of a vehicle node and relative features among vehicle nodes. Then, we formulate a DC model based on connectivity among vehicle nodes and vehicle node density. Finally, we present a DC model-based routing method to realize stable communications among vehicle nodes. The experimental results show that the proposed CP can achieve a lower error rate than the geographic routing based on predictive locations and multilayer perceptron. The proposed routing method can achieve lower end-to-end latency and higher delivery rate than the greedy perimeter stateless routing and modified distributed and mobility-adaptive clustering-based methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2990935</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5999-2126</orcidid><orcidid>https://orcid.org/0000-0001-5042-3261</orcidid><orcidid>https://orcid.org/0000-0001-8814-6423</orcidid><orcidid>https://orcid.org/0000-0001-5176-4762</orcidid><orcidid>https://orcid.org/0000-0002-5408-8752</orcidid><orcidid>https://orcid.org/0000-0001-8659-4062</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2020-09, Vol.7 (9), p.8410-8418 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_9080073 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering Connectivity Connectivity prediction Density dynamic clustering (DC) Internet of Things Internet of Vehicles Mobile ad hoc networks Multilayer perceptrons Nodes Null value Roads Routing Suburban areas urban scene Vehicle dynamics vehicular <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ad hoc network (VANET) Vehicular ad hoc networks |
title | A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Connectivity-Prediction-Based%20Dynamic%20Clustering%20Model%20for%20VANET%20in%20an%20Urban%20Scene&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Cheng,%20Jiujun&rft.date=2020-09-01&rft.volume=7&rft.issue=9&rft.spage=8410&rft.epage=8418&rft.pages=8410-8418&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2990935&rft_dat=%3Cproquest_RIE%3E2444610650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444610650&rft_id=info:pmid/&rft_ieee_id=9080073&rfr_iscdi=true |