A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene

Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2020-09, Vol.7 (9), p.8410-8418
Hauptverfasser: Cheng, Jiujun, Yuan, Guiyuan, Zhou, MengChu, Gao, Shangce, Huang, Zhenhua, Liu, Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8418
container_issue 9
container_start_page 8410
container_title IEEE internet of things journal
container_volume 7
creator Cheng, Jiujun
Yuan, Guiyuan
Zhou, MengChu
Gao, Shangce
Huang, Zhenhua
Liu, Cong
description Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and reveal the relationship among network connectivity, node density, and a communication range. Because of various influencing factors and changing communication states, most of their results are not applicable to VANET in an urban scene. In this article, we propose a connectivity prediction-based dynamic clustering (DC) model for VANET in an urban scene. First, we introduce a connectivity prediction method (CP) according to the features of a vehicle node and relative features among vehicle nodes. Then, we formulate a DC model based on connectivity among vehicle nodes and vehicle node density. Finally, we present a DC model-based routing method to realize stable communications among vehicle nodes. The experimental results show that the proposed CP can achieve a lower error rate than the geographic routing based on predictive locations and multilayer perceptron. The proposed routing method can achieve lower end-to-end latency and higher delivery rate than the greedy perimeter stateless routing and modified distributed and mobility-adaptive clustering-based methods.
doi_str_mv 10.1109/JIOT.2020.2990935
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9080073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9080073</ieee_id><sourcerecordid>2444610650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-db38fc2fe89b8808f7c44bb84c838d654bda9f5202da23707ad64bb2b3048fed3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOZ-gHgT8LrzNEnb5HLWqZPpBDtvQ5oP6djSmXTC_r0ZG-LN-eC87zmcJ0muMxhnGfC7l9miHmPAMMacAyf5WTLABJcpLQp8_q--TEYhrAAg2vKMF4OknqCqc86ovv1p-3367o1uY9O59F4Go9HD3slNq1C13oXe-NZ9oddOmzWynUefk7dpjVqHpENL38T4oYwzV8mFletgRqc8TJaP07p6TueLp1k1maeKAu5T3RBmFbaG8YYxYLZUlDYNo4oRpoucNlpym8fHtMSkhFLqIs5xQ4AyazQZJrfHvVvffe9M6MWq23kXTwpMKS0yKHKIquyoUr4LwRsrtr7dSL8XGYgDP3HgJw78xIlf9NwcPa0x5k_PgQGUhPwCCWZqsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444610650</pqid></control><display><type>article</type><title>A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Jiujun ; Yuan, Guiyuan ; Zhou, MengChu ; Gao, Shangce ; Huang, Zhenhua ; Liu, Cong</creator><creatorcontrib>Cheng, Jiujun ; Yuan, Guiyuan ; Zhou, MengChu ; Gao, Shangce ; Huang, Zhenhua ; Liu, Cong</creatorcontrib><description>Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and reveal the relationship among network connectivity, node density, and a communication range. Because of various influencing factors and changing communication states, most of their results are not applicable to VANET in an urban scene. In this article, we propose a connectivity prediction-based dynamic clustering (DC) model for VANET in an urban scene. First, we introduce a connectivity prediction method (CP) according to the features of a vehicle node and relative features among vehicle nodes. Then, we formulate a DC model based on connectivity among vehicle nodes and vehicle node density. Finally, we present a DC model-based routing method to realize stable communications among vehicle nodes. The experimental results show that the proposed CP can achieve a lower error rate than the geographic routing based on predictive locations and multilayer perceptron. The proposed routing method can achieve lower end-to-end latency and higher delivery rate than the greedy perimeter stateless routing and modified distributed and mobility-adaptive clustering-based methods.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2990935</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; Connectivity ; Connectivity prediction ; Density ; dynamic clustering (DC) ; Internet of Things ; Internet of Vehicles ; Mobile ad hoc networks ; Multilayer perceptrons ; Nodes ; Null value ; Roads ; Routing ; Suburban areas ; urban scene ; Vehicle dynamics ; vehicular &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ad hoc network (VANET) ; Vehicular ad hoc networks</subject><ispartof>IEEE internet of things journal, 2020-09, Vol.7 (9), p.8410-8418</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-db38fc2fe89b8808f7c44bb84c838d654bda9f5202da23707ad64bb2b3048fed3</citedby><cites>FETCH-LOGICAL-c402t-db38fc2fe89b8808f7c44bb84c838d654bda9f5202da23707ad64bb2b3048fed3</cites><orcidid>0000-0002-5999-2126 ; 0000-0001-5042-3261 ; 0000-0001-8814-6423 ; 0000-0001-5176-4762 ; 0000-0002-5408-8752 ; 0000-0001-8659-4062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9080073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9080073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Jiujun</creatorcontrib><creatorcontrib>Yuan, Guiyuan</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Gao, Shangce</creatorcontrib><creatorcontrib>Huang, Zhenhua</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><title>A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and reveal the relationship among network connectivity, node density, and a communication range. Because of various influencing factors and changing communication states, most of their results are not applicable to VANET in an urban scene. In this article, we propose a connectivity prediction-based dynamic clustering (DC) model for VANET in an urban scene. First, we introduce a connectivity prediction method (CP) according to the features of a vehicle node and relative features among vehicle nodes. Then, we formulate a DC model based on connectivity among vehicle nodes and vehicle node density. Finally, we present a DC model-based routing method to realize stable communications among vehicle nodes. The experimental results show that the proposed CP can achieve a lower error rate than the geographic routing based on predictive locations and multilayer perceptron. The proposed routing method can achieve lower end-to-end latency and higher delivery rate than the greedy perimeter stateless routing and modified distributed and mobility-adaptive clustering-based methods.</description><subject>Clustering</subject><subject>Connectivity</subject><subject>Connectivity prediction</subject><subject>Density</subject><subject>dynamic clustering (DC)</subject><subject>Internet of Things</subject><subject>Internet of Vehicles</subject><subject>Mobile ad hoc networks</subject><subject>Multilayer perceptrons</subject><subject>Nodes</subject><subject>Null value</subject><subject>Roads</subject><subject>Routing</subject><subject>Suburban areas</subject><subject>urban scene</subject><subject>Vehicle dynamics</subject><subject>vehicular &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ad hoc network (VANET)</subject><subject>Vehicular ad hoc networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOOZ-gHgT8LrzNEnb5HLWqZPpBDtvQ5oP6djSmXTC_r0ZG-LN-eC87zmcJ0muMxhnGfC7l9miHmPAMMacAyf5WTLABJcpLQp8_q--TEYhrAAg2vKMF4OknqCqc86ovv1p-3367o1uY9O59F4Go9HD3slNq1C13oXe-NZ9oddOmzWynUefk7dpjVqHpENL38T4oYwzV8mFletgRqc8TJaP07p6TueLp1k1maeKAu5T3RBmFbaG8YYxYLZUlDYNo4oRpoucNlpym8fHtMSkhFLqIs5xQ4AyazQZJrfHvVvffe9M6MWq23kXTwpMKS0yKHKIquyoUr4LwRsrtr7dSL8XGYgDP3HgJw78xIlf9NwcPa0x5k_PgQGUhPwCCWZqsA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Cheng, Jiujun</creator><creator>Yuan, Guiyuan</creator><creator>Zhou, MengChu</creator><creator>Gao, Shangce</creator><creator>Huang, Zhenhua</creator><creator>Liu, Cong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5999-2126</orcidid><orcidid>https://orcid.org/0000-0001-5042-3261</orcidid><orcidid>https://orcid.org/0000-0001-8814-6423</orcidid><orcidid>https://orcid.org/0000-0001-5176-4762</orcidid><orcidid>https://orcid.org/0000-0002-5408-8752</orcidid><orcidid>https://orcid.org/0000-0001-8659-4062</orcidid></search><sort><creationdate>20200901</creationdate><title>A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene</title><author>Cheng, Jiujun ; Yuan, Guiyuan ; Zhou, MengChu ; Gao, Shangce ; Huang, Zhenhua ; Liu, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-db38fc2fe89b8808f7c44bb84c838d654bda9f5202da23707ad64bb2b3048fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Connectivity</topic><topic>Connectivity prediction</topic><topic>Density</topic><topic>dynamic clustering (DC)</topic><topic>Internet of Things</topic><topic>Internet of Vehicles</topic><topic>Mobile ad hoc networks</topic><topic>Multilayer perceptrons</topic><topic>Nodes</topic><topic>Null value</topic><topic>Roads</topic><topic>Routing</topic><topic>Suburban areas</topic><topic>urban scene</topic><topic>Vehicle dynamics</topic><topic>vehicular &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ad hoc network (VANET)</topic><topic>Vehicular ad hoc networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jiujun</creatorcontrib><creatorcontrib>Yuan, Guiyuan</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Gao, Shangce</creatorcontrib><creatorcontrib>Huang, Zhenhua</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Jiujun</au><au>Yuan, Guiyuan</au><au>Zhou, MengChu</au><au>Gao, Shangce</au><au>Huang, Zhenhua</au><au>Liu, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>7</volume><issue>9</issue><spage>8410</spage><epage>8418</epage><pages>8410-8418</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Maintaining network connectivity is an important challenge for vehicular ad hoc network (VANET) in an urban scene, which has more complex road conditions than highways and suburban areas. Most existing studies analyze end-to-end connectivity probability under a certain node distribution model, and reveal the relationship among network connectivity, node density, and a communication range. Because of various influencing factors and changing communication states, most of their results are not applicable to VANET in an urban scene. In this article, we propose a connectivity prediction-based dynamic clustering (DC) model for VANET in an urban scene. First, we introduce a connectivity prediction method (CP) according to the features of a vehicle node and relative features among vehicle nodes. Then, we formulate a DC model based on connectivity among vehicle nodes and vehicle node density. Finally, we present a DC model-based routing method to realize stable communications among vehicle nodes. The experimental results show that the proposed CP can achieve a lower error rate than the geographic routing based on predictive locations and multilayer perceptron. The proposed routing method can achieve lower end-to-end latency and higher delivery rate than the greedy perimeter stateless routing and modified distributed and mobility-adaptive clustering-based methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2990935</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5999-2126</orcidid><orcidid>https://orcid.org/0000-0001-5042-3261</orcidid><orcidid>https://orcid.org/0000-0001-8814-6423</orcidid><orcidid>https://orcid.org/0000-0001-5176-4762</orcidid><orcidid>https://orcid.org/0000-0002-5408-8752</orcidid><orcidid>https://orcid.org/0000-0001-8659-4062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-09, Vol.7 (9), p.8410-8418
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_9080073
source IEEE Electronic Library (IEL)
subjects Clustering
Connectivity
Connectivity prediction
Density
dynamic clustering (DC)
Internet of Things
Internet of Vehicles
Mobile ad hoc networks
Multilayer perceptrons
Nodes
Null value
Roads
Routing
Suburban areas
urban scene
Vehicle dynamics
vehicular <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ad hoc network (VANET)
Vehicular ad hoc networks
title A Connectivity-Prediction-Based Dynamic Clustering Model for VANET in an Urban Scene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Connectivity-Prediction-Based%20Dynamic%20Clustering%20Model%20for%20VANET%20in%20an%20Urban%20Scene&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Cheng,%20Jiujun&rft.date=2020-09-01&rft.volume=7&rft.issue=9&rft.spage=8410&rft.epage=8418&rft.pages=8410-8418&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2990935&rft_dat=%3Cproquest_RIE%3E2444610650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444610650&rft_id=info:pmid/&rft_ieee_id=9080073&rfr_iscdi=true