A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching
Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does n...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.74525-74534 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74534 |
---|---|
container_issue | |
container_start_page | 74525 |
container_title | IEEE access |
container_volume | 8 |
creator | Liu, Fu Jiang, Shoukun Kang, Bing Hou, Tao |
description | Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. |
doi_str_mv | 10.1109/ACCESS.2020.2988714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9072173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9072173</ieee_id><doaj_id>oai_doaj_org_article_b012ff2d84e342d1911f34ef8065b126</doaj_id><sourcerecordid>2454091995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5a17e5f8076732eddcaf7d22043987ececb7bafade55db548fc533913d1b761b3</originalsourceid><addsrcrecordid>eNpNUU1PIzEMHa0WCQT8Ai6R9txuPieTY7fLlkogEAWuUSZxSqrppJtMkfrvSRmE8MWW_d6zrVdVVwRPCcHq92w-v16tphRTPKWqaSThP6ozSmo1YYLVP7_Vp9VlzhtcoiktIc8qN0OPYOO6D0OIPVod8gBb5GNCDyYNwXTdAd1b2-0dOPQ3pmw6dGN6h14g9Og5h36Nlttdim9l_ifELQwpWLRIZveK7sxgXwviojrxpstw-ZnPq-d_10_zm8nt_WI5n91OLMfNMBGGSBC-wbKWjIJz1njpKMWcqUaCBdvK1njjQAjXCt54KxhThDnSypq07Lxajroumo3epbA16aCjCfqjEdNaH5-yHegWE-o9dQ0HxqkjihDPOJTltWgJrYvWr1Gr_PZ_D3nQm7hPfTlfUy44VkQpUVBsRNkUc07gv7YSrI_u6NEdfXRHf7pTWFcjKwDAF0NhSYlk7B1aDYr0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454091995</pqid></control><display><type>article</type><title>A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</creator><creatorcontrib>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</creatorcontrib><description>Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2988714</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; biometric graph matching ; Biometrics ; Dorsal hand vein recognition ; Feature extraction ; Graph matching ; Image edge detection ; Occlusion ; Pattern recognition ; Robustness ; Shape ; Tattoos ; Veins</subject><ispartof>IEEE access, 2020, Vol.8, p.74525-74534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5a17e5f8076732eddcaf7d22043987ececb7bafade55db548fc533913d1b761b3</citedby><cites>FETCH-LOGICAL-c408t-5a17e5f8076732eddcaf7d22043987ececb7bafade55db548fc533913d1b761b3</cites><orcidid>0000-0001-6700-2279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9072173$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Jiang, Shoukun</creatorcontrib><creatorcontrib>Kang, Bing</creatorcontrib><creatorcontrib>Hou, Tao</creatorcontrib><title>A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</title><title>IEEE access</title><addtitle>Access</addtitle><description>Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.</description><subject>Algorithms</subject><subject>biometric graph matching</subject><subject>Biometrics</subject><subject>Dorsal hand vein recognition</subject><subject>Feature extraction</subject><subject>Graph matching</subject><subject>Image edge detection</subject><subject>Occlusion</subject><subject>Pattern recognition</subject><subject>Robustness</subject><subject>Shape</subject><subject>Tattoos</subject><subject>Veins</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PIzEMHa0WCQT8Ai6R9txuPieTY7fLlkogEAWuUSZxSqrppJtMkfrvSRmE8MWW_d6zrVdVVwRPCcHq92w-v16tphRTPKWqaSThP6ozSmo1YYLVP7_Vp9VlzhtcoiktIc8qN0OPYOO6D0OIPVod8gBb5GNCDyYNwXTdAd1b2-0dOPQ3pmw6dGN6h14g9Og5h36Nlttdim9l_ifELQwpWLRIZveK7sxgXwviojrxpstw-ZnPq-d_10_zm8nt_WI5n91OLMfNMBGGSBC-wbKWjIJz1njpKMWcqUaCBdvK1njjQAjXCt54KxhThDnSypq07Lxajroumo3epbA16aCjCfqjEdNaH5-yHegWE-o9dQ0HxqkjihDPOJTltWgJrYvWr1Gr_PZ_D3nQm7hPfTlfUy44VkQpUVBsRNkUc07gv7YSrI_u6NEdfXRHf7pTWFcjKwDAF0NhSYlk7B1aDYr0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Fu</creator><creator>Jiang, Shoukun</creator><creator>Kang, Bing</creator><creator>Hou, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6700-2279</orcidid></search><sort><creationdate>2020</creationdate><title>A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</title><author>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5a17e5f8076732eddcaf7d22043987ececb7bafade55db548fc533913d1b761b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>biometric graph matching</topic><topic>Biometrics</topic><topic>Dorsal hand vein recognition</topic><topic>Feature extraction</topic><topic>Graph matching</topic><topic>Image edge detection</topic><topic>Occlusion</topic><topic>Pattern recognition</topic><topic>Robustness</topic><topic>Shape</topic><topic>Tattoos</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Jiang, Shoukun</creatorcontrib><creatorcontrib>Kang, Bing</creatorcontrib><creatorcontrib>Hou, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fu</au><au>Jiang, Shoukun</au><au>Kang, Bing</au><au>Hou, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>74525</spage><epage>74534</epage><pages>74525-74534</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2988714</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6700-2279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.74525-74534 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9072173 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms biometric graph matching Biometrics Dorsal hand vein recognition Feature extraction Graph matching Image edge detection Occlusion Pattern recognition Robustness Shape Tattoos Veins |
title | A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Recognition%20System%20for%20Partially%20Occluded%20Dorsal%20Hand%20Vein%20Using%20Improved%20Biometric%20Graph%20Matching&rft.jtitle=IEEE%20access&rft.au=Liu,%20Fu&rft.date=2020&rft.volume=8&rft.spage=74525&rft.epage=74534&rft.pages=74525-74534&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2988714&rft_dat=%3Cproquest_ieee_%3E2454091995%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454091995&rft_id=info:pmid/&rft_ieee_id=9072173&rft_doaj_id=oai_doaj_org_article_b012ff2d84e342d1911f34ef8065b126&rfr_iscdi=true |