A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching

Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.74525-74534
Hauptverfasser: Liu, Fu, Jiang, Shoukun, Kang, Bing, Hou, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74534
container_issue
container_start_page 74525
container_title IEEE access
container_volume 8
creator Liu, Fu
Jiang, Shoukun
Kang, Bing
Hou, Tao
description Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.
doi_str_mv 10.1109/ACCESS.2020.2988714
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9072173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9072173</ieee_id><doaj_id>oai_doaj_org_article_b012ff2d84e342d1911f34ef8065b126</doaj_id><sourcerecordid>2454091995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5a17e5f8076732eddcaf7d22043987ececb7bafade55db548fc533913d1b761b3</originalsourceid><addsrcrecordid>eNpNUU1PIzEMHa0WCQT8Ai6R9txuPieTY7fLlkogEAWuUSZxSqrppJtMkfrvSRmE8MWW_d6zrVdVVwRPCcHq92w-v16tphRTPKWqaSThP6ozSmo1YYLVP7_Vp9VlzhtcoiktIc8qN0OPYOO6D0OIPVod8gBb5GNCDyYNwXTdAd1b2-0dOPQ3pmw6dGN6h14g9Og5h36Nlttdim9l_ifELQwpWLRIZveK7sxgXwviojrxpstw-ZnPq-d_10_zm8nt_WI5n91OLMfNMBGGSBC-wbKWjIJz1njpKMWcqUaCBdvK1njjQAjXCt54KxhThDnSypq07Lxajroumo3epbA16aCjCfqjEdNaH5-yHegWE-o9dQ0HxqkjihDPOJTltWgJrYvWr1Gr_PZ_D3nQm7hPfTlfUy44VkQpUVBsRNkUc07gv7YSrI_u6NEdfXRHf7pTWFcjKwDAF0NhSYlk7B1aDYr0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454091995</pqid></control><display><type>article</type><title>A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</creator><creatorcontrib>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</creatorcontrib><description>Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2988714</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; biometric graph matching ; Biometrics ; Dorsal hand vein recognition ; Feature extraction ; Graph matching ; Image edge detection ; Occlusion ; Pattern recognition ; Robustness ; Shape ; Tattoos ; Veins</subject><ispartof>IEEE access, 2020, Vol.8, p.74525-74534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5a17e5f8076732eddcaf7d22043987ececb7bafade55db548fc533913d1b761b3</citedby><cites>FETCH-LOGICAL-c408t-5a17e5f8076732eddcaf7d22043987ececb7bafade55db548fc533913d1b761b3</cites><orcidid>0000-0001-6700-2279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9072173$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Jiang, Shoukun</creatorcontrib><creatorcontrib>Kang, Bing</creatorcontrib><creatorcontrib>Hou, Tao</creatorcontrib><title>A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</title><title>IEEE access</title><addtitle>Access</addtitle><description>Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.</description><subject>Algorithms</subject><subject>biometric graph matching</subject><subject>Biometrics</subject><subject>Dorsal hand vein recognition</subject><subject>Feature extraction</subject><subject>Graph matching</subject><subject>Image edge detection</subject><subject>Occlusion</subject><subject>Pattern recognition</subject><subject>Robustness</subject><subject>Shape</subject><subject>Tattoos</subject><subject>Veins</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PIzEMHa0WCQT8Ai6R9txuPieTY7fLlkogEAWuUSZxSqrppJtMkfrvSRmE8MWW_d6zrVdVVwRPCcHq92w-v16tphRTPKWqaSThP6ozSmo1YYLVP7_Vp9VlzhtcoiktIc8qN0OPYOO6D0OIPVod8gBb5GNCDyYNwXTdAd1b2-0dOPQ3pmw6dGN6h14g9Og5h36Nlttdim9l_ifELQwpWLRIZveK7sxgXwviojrxpstw-ZnPq-d_10_zm8nt_WI5n91OLMfNMBGGSBC-wbKWjIJz1njpKMWcqUaCBdvK1njjQAjXCt54KxhThDnSypq07Lxajroumo3epbA16aCjCfqjEdNaH5-yHegWE-o9dQ0HxqkjihDPOJTltWgJrYvWr1Gr_PZ_D3nQm7hPfTlfUy44VkQpUVBsRNkUc07gv7YSrI_u6NEdfXRHf7pTWFcjKwDAF0NhSYlk7B1aDYr0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Fu</creator><creator>Jiang, Shoukun</creator><creator>Kang, Bing</creator><creator>Hou, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6700-2279</orcidid></search><sort><creationdate>2020</creationdate><title>A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</title><author>Liu, Fu ; Jiang, Shoukun ; Kang, Bing ; Hou, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5a17e5f8076732eddcaf7d22043987ececb7bafade55db548fc533913d1b761b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>biometric graph matching</topic><topic>Biometrics</topic><topic>Dorsal hand vein recognition</topic><topic>Feature extraction</topic><topic>Graph matching</topic><topic>Image edge detection</topic><topic>Occlusion</topic><topic>Pattern recognition</topic><topic>Robustness</topic><topic>Shape</topic><topic>Tattoos</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Jiang, Shoukun</creatorcontrib><creatorcontrib>Kang, Bing</creatorcontrib><creatorcontrib>Hou, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fu</au><au>Jiang, Shoukun</au><au>Kang, Bing</au><au>Hou, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>74525</spage><epage>74534</epage><pages>74525-74534</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2988714</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6700-2279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.74525-74534
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9072173
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
biometric graph matching
Biometrics
Dorsal hand vein recognition
Feature extraction
Graph matching
Image edge detection
Occlusion
Pattern recognition
Robustness
Shape
Tattoos
Veins
title A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Recognition%20System%20for%20Partially%20Occluded%20Dorsal%20Hand%20Vein%20Using%20Improved%20Biometric%20Graph%20Matching&rft.jtitle=IEEE%20access&rft.au=Liu,%20Fu&rft.date=2020&rft.volume=8&rft.spage=74525&rft.epage=74534&rft.pages=74525-74534&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2988714&rft_dat=%3Cproquest_ieee_%3E2454091995%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454091995&rft_id=info:pmid/&rft_ieee_id=9072173&rft_doaj_id=oai_doaj_org_article_b012ff2d84e342d1911f34ef8065b126&rfr_iscdi=true