Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures

Cryogenic device models are essential for the reliable design of the cryo-CMOS electronic interface necessary to build future large-scale quantum computers. This paper reports the characterization of the drain-current mismatch of NMOS and PMOS devices fabricated in a commercial 40-nm bulk CMOS proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2020, Vol.8, p.797-806
Hauptverfasser: T Hart, P. A., Babaie, M., Charbon, Edoardo, Vladimirescu, Andrei, Sebastiano, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue
container_start_page 797
container_title IEEE journal of the Electron Devices Society
container_volume 8
creator T Hart, P. A.
Babaie, M.
Charbon, Edoardo
Vladimirescu, Andrei
Sebastiano, Fabio
description Cryogenic device models are essential for the reliable design of the cryo-CMOS electronic interface necessary to build future large-scale quantum computers. This paper reports the characterization of the drain-current mismatch of NMOS and PMOS devices fabricated in a commercial 40-nm bulk CMOS process over the temperature range from 4.2K to 300 K. By analysing the variability of device parameters over a wide range of device area and length, the validity of the Pelgrom area-scaling law is assessed for the threshold voltage, the current factor and the subthreshold swing. The Croon model is employed to model the drain-current mismatch in moderate to strong inversion, while the weak inversion region is modeled by taking the subthreshold slope variability into account. This results in the first model capable of predicting CMOS-device mismatch over all operating regions and in the whole temperature range from 300K down to 4.2K.
doi_str_mv 10.1109/JEDS.2020.2988730
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9072133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9072133</ieee_id><doaj_id>oai_doaj_org_article_cb17554bb9b949e8aadc128e670d6960</doaj_id><sourcerecordid>2434119421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-456bd0a0ce6adcfad17c5bf2703888209d404314a92c53fa6741c3833e62302f3</originalsourceid><addsrcrecordid>eNpNUEtPwkAQbowmEuQHGC9NPIOzj253jwRRMSAH8LzZbqdQAl3ctgf-vYslxLnMZPI9Zr4oeiQwIgTUy-f0dTWiQGFElZQpg5uoR4mQQ5Eyfvtvvo8Gdb2DUJIIJUQvGq_arNl6rLdun8eLsj6Yxm7jsoq_TOUO2KCPJ4vlKjZNPPEnt8GqtPEaD0f0pmkD8SG6K8y-xsGl96Pvt-l68jGcL99nk_F8aDnQZsgTkeVgwKIwuS1MTlKbZAVNgUkpKaicA2eEG0VtwgojUk4sk4yhoAxowfrRrNPNndnpoy8Pxp-0M6X-Wzi_0cY3pd2jthlJk4RnmcoUVyhNcCRUokghD29D0HrutI7e_bRYN3rnWl-F8zXljBOiOCUBRTqU9a6uPRZXVwL6HLw-B6_PwetL8IHz1HFKRLziFaRBj7FfDyF8kA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434119421</pqid></control><display><type>article</type><title>Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>T Hart, P. A. ; Babaie, M. ; Charbon, Edoardo ; Vladimirescu, Andrei ; Sebastiano, Fabio</creator><creatorcontrib>T Hart, P. A. ; Babaie, M. ; Charbon, Edoardo ; Vladimirescu, Andrei ; Sebastiano, Fabio</creatorcontrib><description>Cryogenic device models are essential for the reliable design of the cryo-CMOS electronic interface necessary to build future large-scale quantum computers. This paper reports the characterization of the drain-current mismatch of NMOS and PMOS devices fabricated in a commercial 40-nm bulk CMOS process over the temperature range from 4.2K to 300 K. By analysing the variability of device parameters over a wide range of device area and length, the validity of the Pelgrom area-scaling law is assessed for the threshold voltage, the current factor and the subthreshold swing. The Croon model is employed to model the drain-current mismatch in moderate to strong inversion, while the weak inversion region is modeled by taking the subthreshold slope variability into account. This results in the first model capable of predicting CMOS-device mismatch over all operating regions and in the whole temperature range from 300K down to 4.2K.</description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2020.2988730</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; Computer simulation ; Cryogenic temperature ; Cryogenics ; Current measurement ; Geometry ; MOS devices ; Quantum computers ; Scaling laws ; Semiconductor device measurement ; Temperature sensors ; Threshold voltage</subject><ispartof>IEEE journal of the Electron Devices Society, 2020, Vol.8, p.797-806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-456bd0a0ce6adcfad17c5bf2703888209d404314a92c53fa6741c3833e62302f3</citedby><cites>FETCH-LOGICAL-c402t-456bd0a0ce6adcfad17c5bf2703888209d404314a92c53fa6741c3833e62302f3</cites><orcidid>0000-0002-0620-3365 ; 0000-0002-8489-9409 ; 0000-0002-4544-855X ; 0000-0001-7635-5324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9072133$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>T Hart, P. A.</creatorcontrib><creatorcontrib>Babaie, M.</creatorcontrib><creatorcontrib>Charbon, Edoardo</creatorcontrib><creatorcontrib>Vladimirescu, Andrei</creatorcontrib><creatorcontrib>Sebastiano, Fabio</creatorcontrib><title>Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description>Cryogenic device models are essential for the reliable design of the cryo-CMOS electronic interface necessary to build future large-scale quantum computers. This paper reports the characterization of the drain-current mismatch of NMOS and PMOS devices fabricated in a commercial 40-nm bulk CMOS process over the temperature range from 4.2K to 300 K. By analysing the variability of device parameters over a wide range of device area and length, the validity of the Pelgrom area-scaling law is assessed for the threshold voltage, the current factor and the subthreshold swing. The Croon model is employed to model the drain-current mismatch in moderate to strong inversion, while the weak inversion region is modeled by taking the subthreshold slope variability into account. This results in the first model capable of predicting CMOS-device mismatch over all operating regions and in the whole temperature range from 300K down to 4.2K.</description><subject>CMOS</subject><subject>Computer simulation</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>Current measurement</subject><subject>Geometry</subject><subject>MOS devices</subject><subject>Quantum computers</subject><subject>Scaling laws</subject><subject>Semiconductor device measurement</subject><subject>Temperature sensors</subject><subject>Threshold voltage</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEtPwkAQbowmEuQHGC9NPIOzj253jwRRMSAH8LzZbqdQAl3ctgf-vYslxLnMZPI9Zr4oeiQwIgTUy-f0dTWiQGFElZQpg5uoR4mQQ5Eyfvtvvo8Gdb2DUJIIJUQvGq_arNl6rLdun8eLsj6Yxm7jsoq_TOUO2KCPJ4vlKjZNPPEnt8GqtPEaD0f0pmkD8SG6K8y-xsGl96Pvt-l68jGcL99nk_F8aDnQZsgTkeVgwKIwuS1MTlKbZAVNgUkpKaicA2eEG0VtwgojUk4sk4yhoAxowfrRrNPNndnpoy8Pxp-0M6X-Wzi_0cY3pd2jthlJk4RnmcoUVyhNcCRUokghD29D0HrutI7e_bRYN3rnWl-F8zXljBOiOCUBRTqU9a6uPRZXVwL6HLw-B6_PwetL8IHz1HFKRLziFaRBj7FfDyF8kA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>T Hart, P. A.</creator><creator>Babaie, M.</creator><creator>Charbon, Edoardo</creator><creator>Vladimirescu, Andrei</creator><creator>Sebastiano, Fabio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0620-3365</orcidid><orcidid>https://orcid.org/0000-0002-8489-9409</orcidid><orcidid>https://orcid.org/0000-0002-4544-855X</orcidid><orcidid>https://orcid.org/0000-0001-7635-5324</orcidid></search><sort><creationdate>2020</creationdate><title>Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures</title><author>T Hart, P. A. ; Babaie, M. ; Charbon, Edoardo ; Vladimirescu, Andrei ; Sebastiano, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-456bd0a0ce6adcfad17c5bf2703888209d404314a92c53fa6741c3833e62302f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CMOS</topic><topic>Computer simulation</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>Current measurement</topic><topic>Geometry</topic><topic>MOS devices</topic><topic>Quantum computers</topic><topic>Scaling laws</topic><topic>Semiconductor device measurement</topic><topic>Temperature sensors</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>T Hart, P. A.</creatorcontrib><creatorcontrib>Babaie, M.</creatorcontrib><creatorcontrib>Charbon, Edoardo</creatorcontrib><creatorcontrib>Vladimirescu, Andrei</creatorcontrib><creatorcontrib>Sebastiano, Fabio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>T Hart, P. A.</au><au>Babaie, M.</au><au>Charbon, Edoardo</au><au>Vladimirescu, Andrei</au><au>Sebastiano, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>797</spage><epage>806</epage><pages>797-806</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract>Cryogenic device models are essential for the reliable design of the cryo-CMOS electronic interface necessary to build future large-scale quantum computers. This paper reports the characterization of the drain-current mismatch of NMOS and PMOS devices fabricated in a commercial 40-nm bulk CMOS process over the temperature range from 4.2K to 300 K. By analysing the variability of device parameters over a wide range of device area and length, the validity of the Pelgrom area-scaling law is assessed for the threshold voltage, the current factor and the subthreshold swing. The Croon model is employed to model the drain-current mismatch in moderate to strong inversion, while the weak inversion region is modeled by taking the subthreshold slope variability into account. This results in the first model capable of predicting CMOS-device mismatch over all operating regions and in the whole temperature range from 300K down to 4.2K.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2020.2988730</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0620-3365</orcidid><orcidid>https://orcid.org/0000-0002-8489-9409</orcidid><orcidid>https://orcid.org/0000-0002-4544-855X</orcidid><orcidid>https://orcid.org/0000-0001-7635-5324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2020, Vol.8, p.797-806
issn 2168-6734
2168-6734
language eng
recordid cdi_ieee_primary_9072133
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects CMOS
Computer simulation
Cryogenic temperature
Cryogenics
Current measurement
Geometry
MOS devices
Quantum computers
Scaling laws
Semiconductor device measurement
Temperature sensors
Threshold voltage
title Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subthreshold%20Mismatch%20in%20Nanometer%20CMOS%20at%20Cryogenic%20Temperatures&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=T%20Hart,%20P.%20A.&rft.date=2020&rft.volume=8&rft.spage=797&rft.epage=806&rft.pages=797-806&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2020.2988730&rft_dat=%3Cproquest_ieee_%3E2434119421%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434119421&rft_id=info:pmid/&rft_ieee_id=9072133&rft_doaj_id=oai_doaj_org_article_cb17554bb9b949e8aadc128e670d6960&rfr_iscdi=true