The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties
This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the hig...
Gespeichert in:
Veröffentlicht in: | IEEE journal of the Electron Devices Society 2020, Vol.8, p.457-464 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | |
container_start_page | 457 |
container_title | IEEE journal of the Electron Devices Society |
container_volume | 8 |
creator | Asad, Muhammad Bonmann, Marlene Yang, Xinxin Vorobiev, Andrei Jeppson, Kjell Banszerus, Luca Otto, Martin Stampfer, Christoph Neumaier, Daniel Stake, Jan |
description | This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the high-frequency performance of GFETs fabricated on a silicon chip. We measured the transit frequency ( {f} _{\mathrm{ T}} ) and the maximum frequency of oscillation ( {f} _{\max } ) for a set of GFETs across the chip, and as a measure of the material quality, we chose low-field carrier mobility. The low-field mobility varied across the chip from 600 cm 2 /Vs to 2000 cm 2 /Vs, while the {f} _{\mathrm{ T}} and {f} _{\max } frequencies varied from 20 GHz to 37 GHz. The relationship between these frequencies and the low-field mobility was observed experimentally and explained using a methodology based on a small-signal equivalent circuit model with parameters extracted from the drain resistance model and the charge-carrier velocity saturation model. Sensitivity analysis clarified the effects of equivalent-circuit parameters on the {f} _{\mathrm{ T}} and {f} _{\max } frequencies. To improve the GFET high-frequency performance, the transconductance was the most critical parameter, which could be improved by increasing the charge-carrier saturation velocity by selecting adjacent dielectric materials with optical phonon energies higher than that of SiO 2 . |
doi_str_mv | 10.1109/JEDS.2020.2988630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9070193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9070193</ieee_id><doaj_id>oai_doaj_org_article_356d226b5d3d4e8687e7e28e2f3bd0e5</doaj_id><sourcerecordid>2401124805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-4c187d5d838759d3df5fd99415d19e34afd1a7f3af96cfbc7205f6d097c91cbf3</originalsourceid><addsrcrecordid>eNpVkktr3DAUhU1poCHNDyjdGLr2VA9bj2WZzCQpgQQyXQtZuoo9eCz3ykPJv4-mHkKrjcTh3O-IyymKL5SsKCX6-8_NzfOKEUZWTCslOPlQXDIqVCUkrz_-8_5UXKe0J_koKrQQl8Vx10F5AxOMHkYHZQzlnJW7_qWrtgi_j1l9LZ8AQ8SDPTtu0U4djFBuexh8tQkB3Fzu0I6pT3PEVMaxXHd2HGFY5CniXD5hnADnHtLn4iLYIcH1-b4qfm03u_Vd9fB4e7_-8VC5Wqq5qh1V0jdecSUb7bkPTfBa17TxVAOvbfDUysBt0MKF1klGmiA80dJp6trAr4r7heuj3ZsJ-4PFVxNtb_4KEV-MzR9yAxjeCM-YaJscU4MSSoIEpoAF3noCTWY9L6z0B6Zj-x8NIYFF1xnX2eEAmEwC4xhlAlQwnLatqT1xRrU665w3TlDRKq0y9dtCnTDmZafZ7OMRx7wUw2pCKasVOWXTxeUwpoQQ3tMpMacKmFMFzKkC5lyBPPN1mekB4N2viSRUc_4GMAut2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401124805</pqid></control><display><type>article</type><title>The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Asad, Muhammad ; Bonmann, Marlene ; Yang, Xinxin ; Vorobiev, Andrei ; Jeppson, Kjell ; Banszerus, Luca ; Otto, Martin ; Stampfer, Christoph ; Neumaier, Daniel ; Stake, Jan</creator><creatorcontrib>Asad, Muhammad ; Bonmann, Marlene ; Yang, Xinxin ; Vorobiev, Andrei ; Jeppson, Kjell ; Banszerus, Luca ; Otto, Martin ; Stampfer, Christoph ; Neumaier, Daniel ; Stake, Jan</creatorcontrib><description><![CDATA[This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the high-frequency performance of GFETs fabricated on a silicon chip. We measured the transit frequency (<inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula>) and the maximum frequency of oscillation (<inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula>) for a set of GFETs across the chip, and as a measure of the material quality, we chose low-field carrier mobility. The low-field mobility varied across the chip from 600 cm 2 /Vs to 2000 cm 2 /Vs, while the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies varied from 20 GHz to 37 GHz. The relationship between these frequencies and the low-field mobility was observed experimentally and explained using a methodology based on a small-signal equivalent circuit model with parameters extracted from the drain resistance model and the charge-carrier velocity saturation model. Sensitivity analysis clarified the effects of equivalent-circuit parameters on the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies. To improve the GFET high-frequency performance, the transconductance was the most critical parameter, which could be improved by increasing the charge-carrier saturation velocity by selecting adjacent dielectric materials with optical phonon energies higher than that of SiO 2 .]]></description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2020.2988630</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carrier mobility ; contact resistances ; Current carriers ; Dielectrics ; Equivalent circuits ; Field effect transistors ; Frequency measurement ; Graphene ; high frequency ; Logic gates ; Materials selection ; Mathematical models ; maximum frequency of oscillation ; microwave electronics ; Parameter sensitivity ; Resistance ; Saturation ; Semiconductor devices ; Sensitivity analysis ; Silicon ; Silicon dioxide ; Transconductance ; Transistors ; transit frequency ; Transport properties</subject><ispartof>IEEE journal of the Electron Devices Society, 2020, Vol.8, p.457-464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-4c187d5d838759d3df5fd99415d19e34afd1a7f3af96cfbc7205f6d097c91cbf3</citedby><cites>FETCH-LOGICAL-c478t-4c187d5d838759d3df5fd99415d19e34afd1a7f3af96cfbc7205f6d097c91cbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9070193$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,860,881,2095,4009,27612,27902,27903,27904,54912</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/516872$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Asad, Muhammad</creatorcontrib><creatorcontrib>Bonmann, Marlene</creatorcontrib><creatorcontrib>Yang, Xinxin</creatorcontrib><creatorcontrib>Vorobiev, Andrei</creatorcontrib><creatorcontrib>Jeppson, Kjell</creatorcontrib><creatorcontrib>Banszerus, Luca</creatorcontrib><creatorcontrib>Otto, Martin</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><creatorcontrib>Neumaier, Daniel</creatorcontrib><creatorcontrib>Stake, Jan</creatorcontrib><title>The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description><![CDATA[This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the high-frequency performance of GFETs fabricated on a silicon chip. We measured the transit frequency (<inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula>) and the maximum frequency of oscillation (<inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula>) for a set of GFETs across the chip, and as a measure of the material quality, we chose low-field carrier mobility. The low-field mobility varied across the chip from 600 cm 2 /Vs to 2000 cm 2 /Vs, while the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies varied from 20 GHz to 37 GHz. The relationship between these frequencies and the low-field mobility was observed experimentally and explained using a methodology based on a small-signal equivalent circuit model with parameters extracted from the drain resistance model and the charge-carrier velocity saturation model. Sensitivity analysis clarified the effects of equivalent-circuit parameters on the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies. To improve the GFET high-frequency performance, the transconductance was the most critical parameter, which could be improved by increasing the charge-carrier saturation velocity by selecting adjacent dielectric materials with optical phonon energies higher than that of SiO 2 .]]></description><subject>Carrier mobility</subject><subject>contact resistances</subject><subject>Current carriers</subject><subject>Dielectrics</subject><subject>Equivalent circuits</subject><subject>Field effect transistors</subject><subject>Frequency measurement</subject><subject>Graphene</subject><subject>high frequency</subject><subject>Logic gates</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>maximum frequency of oscillation</subject><subject>microwave electronics</subject><subject>Parameter sensitivity</subject><subject>Resistance</subject><subject>Saturation</subject><subject>Semiconductor devices</subject><subject>Sensitivity analysis</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>transit frequency</subject><subject>Transport properties</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkktr3DAUhU1poCHNDyjdGLr2VA9bj2WZzCQpgQQyXQtZuoo9eCz3ykPJv4-mHkKrjcTh3O-IyymKL5SsKCX6-8_NzfOKEUZWTCslOPlQXDIqVCUkrz_-8_5UXKe0J_koKrQQl8Vx10F5AxOMHkYHZQzlnJW7_qWrtgi_j1l9LZ8AQ8SDPTtu0U4djFBuexh8tQkB3Fzu0I6pT3PEVMaxXHd2HGFY5CniXD5hnADnHtLn4iLYIcH1-b4qfm03u_Vd9fB4e7_-8VC5Wqq5qh1V0jdecSUb7bkPTfBa17TxVAOvbfDUysBt0MKF1klGmiA80dJp6trAr4r7heuj3ZsJ-4PFVxNtb_4KEV-MzR9yAxjeCM-YaJscU4MSSoIEpoAF3noCTWY9L6z0B6Zj-x8NIYFF1xnX2eEAmEwC4xhlAlQwnLatqT1xRrU665w3TlDRKq0y9dtCnTDmZafZ7OMRx7wUw2pCKasVOWXTxeUwpoQQ3tMpMacKmFMFzKkC5lyBPPN1mekB4N2viSRUc_4GMAut2w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Asad, Muhammad</creator><creator>Bonmann, Marlene</creator><creator>Yang, Xinxin</creator><creator>Vorobiev, Andrei</creator><creator>Jeppson, Kjell</creator><creator>Banszerus, Luca</creator><creator>Otto, Martin</creator><creator>Stampfer, Christoph</creator><creator>Neumaier, Daniel</creator><creator>Stake, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties</title><author>Asad, Muhammad ; Bonmann, Marlene ; Yang, Xinxin ; Vorobiev, Andrei ; Jeppson, Kjell ; Banszerus, Luca ; Otto, Martin ; Stampfer, Christoph ; Neumaier, Daniel ; Stake, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-4c187d5d838759d3df5fd99415d19e34afd1a7f3af96cfbc7205f6d097c91cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier mobility</topic><topic>contact resistances</topic><topic>Current carriers</topic><topic>Dielectrics</topic><topic>Equivalent circuits</topic><topic>Field effect transistors</topic><topic>Frequency measurement</topic><topic>Graphene</topic><topic>high frequency</topic><topic>Logic gates</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>maximum frequency of oscillation</topic><topic>microwave electronics</topic><topic>Parameter sensitivity</topic><topic>Resistance</topic><topic>Saturation</topic><topic>Semiconductor devices</topic><topic>Sensitivity analysis</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>transit frequency</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asad, Muhammad</creatorcontrib><creatorcontrib>Bonmann, Marlene</creatorcontrib><creatorcontrib>Yang, Xinxin</creatorcontrib><creatorcontrib>Vorobiev, Andrei</creatorcontrib><creatorcontrib>Jeppson, Kjell</creatorcontrib><creatorcontrib>Banszerus, Luca</creatorcontrib><creatorcontrib>Otto, Martin</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><creatorcontrib>Neumaier, Daniel</creatorcontrib><creatorcontrib>Stake, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asad, Muhammad</au><au>Bonmann, Marlene</au><au>Yang, Xinxin</au><au>Vorobiev, Andrei</au><au>Jeppson, Kjell</au><au>Banszerus, Luca</au><au>Otto, Martin</au><au>Stampfer, Christoph</au><au>Neumaier, Daniel</au><au>Stake, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>457</spage><epage>464</epage><pages>457-464</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract><![CDATA[This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the high-frequency performance of GFETs fabricated on a silicon chip. We measured the transit frequency (<inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula>) and the maximum frequency of oscillation (<inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula>) for a set of GFETs across the chip, and as a measure of the material quality, we chose low-field carrier mobility. The low-field mobility varied across the chip from 600 cm 2 /Vs to 2000 cm 2 /Vs, while the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies varied from 20 GHz to 37 GHz. The relationship between these frequencies and the low-field mobility was observed experimentally and explained using a methodology based on a small-signal equivalent circuit model with parameters extracted from the drain resistance model and the charge-carrier velocity saturation model. Sensitivity analysis clarified the effects of equivalent-circuit parameters on the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies. To improve the GFET high-frequency performance, the transconductance was the most critical parameter, which could be improved by increasing the charge-carrier saturation velocity by selecting adjacent dielectric materials with optical phonon energies higher than that of SiO 2 .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2020.2988630</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-6734 |
ispartof | IEEE journal of the Electron Devices Society, 2020, Vol.8, p.457-464 |
issn | 2168-6734 2168-6734 |
language | eng |
recordid | cdi_ieee_primary_9070193 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals |
subjects | Carrier mobility contact resistances Current carriers Dielectrics Equivalent circuits Field effect transistors Frequency measurement Graphene high frequency Logic gates Materials selection Mathematical models maximum frequency of oscillation microwave electronics Parameter sensitivity Resistance Saturation Semiconductor devices Sensitivity analysis Silicon Silicon dioxide Transconductance Transistors transit frequency Transport properties |
title | The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dependence%20of%20the%20High-Frequency%20Performance%20of%20Graphene%20Field-Effect%20Transistors%20on%20Channel%20Transport%20Properties&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Asad,%20Muhammad&rft.date=2020&rft.volume=8&rft.spage=457&rft.epage=464&rft.pages=457-464&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2020.2988630&rft_dat=%3Cproquest_ieee_%3E2401124805%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401124805&rft_id=info:pmid/&rft_ieee_id=9070193&rft_doaj_id=oai_doaj_org_article_356d226b5d3d4e8687e7e28e2f3bd0e5&rfr_iscdi=true |