The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties

This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2020, Vol.8, p.457-464
Hauptverfasser: Asad, Muhammad, Bonmann, Marlene, Yang, Xinxin, Vorobiev, Andrei, Jeppson, Kjell, Banszerus, Luca, Otto, Martin, Stampfer, Christoph, Neumaier, Daniel, Stake, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue
container_start_page 457
container_title IEEE journal of the Electron Devices Society
container_volume 8
creator Asad, Muhammad
Bonmann, Marlene
Yang, Xinxin
Vorobiev, Andrei
Jeppson, Kjell
Banszerus, Luca
Otto, Martin
Stampfer, Christoph
Neumaier, Daniel
Stake, Jan
description This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the high-frequency performance of GFETs fabricated on a silicon chip. We measured the transit frequency ( {f} _{\mathrm{ T}} ) and the maximum frequency of oscillation ( {f} _{\max } ) for a set of GFETs across the chip, and as a measure of the material quality, we chose low-field carrier mobility. The low-field mobility varied across the chip from 600 cm 2 /Vs to 2000 cm 2 /Vs, while the {f} _{\mathrm{ T}} and {f} _{\max } frequencies varied from 20 GHz to 37 GHz. The relationship between these frequencies and the low-field mobility was observed experimentally and explained using a methodology based on a small-signal equivalent circuit model with parameters extracted from the drain resistance model and the charge-carrier velocity saturation model. Sensitivity analysis clarified the effects of equivalent-circuit parameters on the {f} _{\mathrm{ T}} and {f} _{\max } frequencies. To improve the GFET high-frequency performance, the transconductance was the most critical parameter, which could be improved by increasing the charge-carrier saturation velocity by selecting adjacent dielectric materials with optical phonon energies higher than that of SiO 2 .
doi_str_mv 10.1109/JEDS.2020.2988630
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9070193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9070193</ieee_id><doaj_id>oai_doaj_org_article_356d226b5d3d4e8687e7e28e2f3bd0e5</doaj_id><sourcerecordid>2401124805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-4c187d5d838759d3df5fd99415d19e34afd1a7f3af96cfbc7205f6d097c91cbf3</originalsourceid><addsrcrecordid>eNpVkktr3DAUhU1poCHNDyjdGLr2VA9bj2WZzCQpgQQyXQtZuoo9eCz3ykPJv4-mHkKrjcTh3O-IyymKL5SsKCX6-8_NzfOKEUZWTCslOPlQXDIqVCUkrz_-8_5UXKe0J_koKrQQl8Vx10F5AxOMHkYHZQzlnJW7_qWrtgi_j1l9LZ8AQ8SDPTtu0U4djFBuexh8tQkB3Fzu0I6pT3PEVMaxXHd2HGFY5CniXD5hnADnHtLn4iLYIcH1-b4qfm03u_Vd9fB4e7_-8VC5Wqq5qh1V0jdecSUb7bkPTfBa17TxVAOvbfDUysBt0MKF1klGmiA80dJp6trAr4r7heuj3ZsJ-4PFVxNtb_4KEV-MzR9yAxjeCM-YaJscU4MSSoIEpoAF3noCTWY9L6z0B6Zj-x8NIYFF1xnX2eEAmEwC4xhlAlQwnLatqT1xRrU665w3TlDRKq0y9dtCnTDmZafZ7OMRx7wUw2pCKasVOWXTxeUwpoQQ3tMpMacKmFMFzKkC5lyBPPN1mekB4N2viSRUc_4GMAut2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401124805</pqid></control><display><type>article</type><title>The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Asad, Muhammad ; Bonmann, Marlene ; Yang, Xinxin ; Vorobiev, Andrei ; Jeppson, Kjell ; Banszerus, Luca ; Otto, Martin ; Stampfer, Christoph ; Neumaier, Daniel ; Stake, Jan</creator><creatorcontrib>Asad, Muhammad ; Bonmann, Marlene ; Yang, Xinxin ; Vorobiev, Andrei ; Jeppson, Kjell ; Banszerus, Luca ; Otto, Martin ; Stampfer, Christoph ; Neumaier, Daniel ; Stake, Jan</creatorcontrib><description><![CDATA[This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the high-frequency performance of GFETs fabricated on a silicon chip. We measured the transit frequency (<inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula>) and the maximum frequency of oscillation (<inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula>) for a set of GFETs across the chip, and as a measure of the material quality, we chose low-field carrier mobility. The low-field mobility varied across the chip from 600 cm 2 /Vs to 2000 cm 2 /Vs, while the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies varied from 20 GHz to 37 GHz. The relationship between these frequencies and the low-field mobility was observed experimentally and explained using a methodology based on a small-signal equivalent circuit model with parameters extracted from the drain resistance model and the charge-carrier velocity saturation model. Sensitivity analysis clarified the effects of equivalent-circuit parameters on the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies. To improve the GFET high-frequency performance, the transconductance was the most critical parameter, which could be improved by increasing the charge-carrier saturation velocity by selecting adjacent dielectric materials with optical phonon energies higher than that of SiO 2 .]]></description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2020.2988630</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carrier mobility ; contact resistances ; Current carriers ; Dielectrics ; Equivalent circuits ; Field effect transistors ; Frequency measurement ; Graphene ; high frequency ; Logic gates ; Materials selection ; Mathematical models ; maximum frequency of oscillation ; microwave electronics ; Parameter sensitivity ; Resistance ; Saturation ; Semiconductor devices ; Sensitivity analysis ; Silicon ; Silicon dioxide ; Transconductance ; Transistors ; transit frequency ; Transport properties</subject><ispartof>IEEE journal of the Electron Devices Society, 2020, Vol.8, p.457-464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-4c187d5d838759d3df5fd99415d19e34afd1a7f3af96cfbc7205f6d097c91cbf3</citedby><cites>FETCH-LOGICAL-c478t-4c187d5d838759d3df5fd99415d19e34afd1a7f3af96cfbc7205f6d097c91cbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9070193$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,860,881,2095,4009,27612,27902,27903,27904,54912</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/516872$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Asad, Muhammad</creatorcontrib><creatorcontrib>Bonmann, Marlene</creatorcontrib><creatorcontrib>Yang, Xinxin</creatorcontrib><creatorcontrib>Vorobiev, Andrei</creatorcontrib><creatorcontrib>Jeppson, Kjell</creatorcontrib><creatorcontrib>Banszerus, Luca</creatorcontrib><creatorcontrib>Otto, Martin</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><creatorcontrib>Neumaier, Daniel</creatorcontrib><creatorcontrib>Stake, Jan</creatorcontrib><title>The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description><![CDATA[This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the high-frequency performance of GFETs fabricated on a silicon chip. We measured the transit frequency (<inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula>) and the maximum frequency of oscillation (<inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula>) for a set of GFETs across the chip, and as a measure of the material quality, we chose low-field carrier mobility. The low-field mobility varied across the chip from 600 cm 2 /Vs to 2000 cm 2 /Vs, while the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies varied from 20 GHz to 37 GHz. The relationship between these frequencies and the low-field mobility was observed experimentally and explained using a methodology based on a small-signal equivalent circuit model with parameters extracted from the drain resistance model and the charge-carrier velocity saturation model. Sensitivity analysis clarified the effects of equivalent-circuit parameters on the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies. To improve the GFET high-frequency performance, the transconductance was the most critical parameter, which could be improved by increasing the charge-carrier saturation velocity by selecting adjacent dielectric materials with optical phonon energies higher than that of SiO 2 .]]></description><subject>Carrier mobility</subject><subject>contact resistances</subject><subject>Current carriers</subject><subject>Dielectrics</subject><subject>Equivalent circuits</subject><subject>Field effect transistors</subject><subject>Frequency measurement</subject><subject>Graphene</subject><subject>high frequency</subject><subject>Logic gates</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>maximum frequency of oscillation</subject><subject>microwave electronics</subject><subject>Parameter sensitivity</subject><subject>Resistance</subject><subject>Saturation</subject><subject>Semiconductor devices</subject><subject>Sensitivity analysis</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>transit frequency</subject><subject>Transport properties</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkktr3DAUhU1poCHNDyjdGLr2VA9bj2WZzCQpgQQyXQtZuoo9eCz3ykPJv4-mHkKrjcTh3O-IyymKL5SsKCX6-8_NzfOKEUZWTCslOPlQXDIqVCUkrz_-8_5UXKe0J_koKrQQl8Vx10F5AxOMHkYHZQzlnJW7_qWrtgi_j1l9LZ8AQ8SDPTtu0U4djFBuexh8tQkB3Fzu0I6pT3PEVMaxXHd2HGFY5CniXD5hnADnHtLn4iLYIcH1-b4qfm03u_Vd9fB4e7_-8VC5Wqq5qh1V0jdecSUb7bkPTfBa17TxVAOvbfDUysBt0MKF1klGmiA80dJp6trAr4r7heuj3ZsJ-4PFVxNtb_4KEV-MzR9yAxjeCM-YaJscU4MSSoIEpoAF3noCTWY9L6z0B6Zj-x8NIYFF1xnX2eEAmEwC4xhlAlQwnLatqT1xRrU665w3TlDRKq0y9dtCnTDmZafZ7OMRx7wUw2pCKasVOWXTxeUwpoQQ3tMpMacKmFMFzKkC5lyBPPN1mekB4N2viSRUc_4GMAut2w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Asad, Muhammad</creator><creator>Bonmann, Marlene</creator><creator>Yang, Xinxin</creator><creator>Vorobiev, Andrei</creator><creator>Jeppson, Kjell</creator><creator>Banszerus, Luca</creator><creator>Otto, Martin</creator><creator>Stampfer, Christoph</creator><creator>Neumaier, Daniel</creator><creator>Stake, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties</title><author>Asad, Muhammad ; Bonmann, Marlene ; Yang, Xinxin ; Vorobiev, Andrei ; Jeppson, Kjell ; Banszerus, Luca ; Otto, Martin ; Stampfer, Christoph ; Neumaier, Daniel ; Stake, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-4c187d5d838759d3df5fd99415d19e34afd1a7f3af96cfbc7205f6d097c91cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier mobility</topic><topic>contact resistances</topic><topic>Current carriers</topic><topic>Dielectrics</topic><topic>Equivalent circuits</topic><topic>Field effect transistors</topic><topic>Frequency measurement</topic><topic>Graphene</topic><topic>high frequency</topic><topic>Logic gates</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>maximum frequency of oscillation</topic><topic>microwave electronics</topic><topic>Parameter sensitivity</topic><topic>Resistance</topic><topic>Saturation</topic><topic>Semiconductor devices</topic><topic>Sensitivity analysis</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>transit frequency</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asad, Muhammad</creatorcontrib><creatorcontrib>Bonmann, Marlene</creatorcontrib><creatorcontrib>Yang, Xinxin</creatorcontrib><creatorcontrib>Vorobiev, Andrei</creatorcontrib><creatorcontrib>Jeppson, Kjell</creatorcontrib><creatorcontrib>Banszerus, Luca</creatorcontrib><creatorcontrib>Otto, Martin</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><creatorcontrib>Neumaier, Daniel</creatorcontrib><creatorcontrib>Stake, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asad, Muhammad</au><au>Bonmann, Marlene</au><au>Yang, Xinxin</au><au>Vorobiev, Andrei</au><au>Jeppson, Kjell</au><au>Banszerus, Luca</au><au>Otto, Martin</au><au>Stampfer, Christoph</au><au>Neumaier, Daniel</au><au>Stake, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>457</spage><epage>464</epage><pages>457-464</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract><![CDATA[This paper addresses the high-frequency performance limitations of graphene field-effect transistors (GFETs) caused by material imperfections. To understand these limitations, we performed a comprehensive study of the relationship between the quality of graphene and surrounding materials and the high-frequency performance of GFETs fabricated on a silicon chip. We measured the transit frequency (<inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula>) and the maximum frequency of oscillation (<inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula>) for a set of GFETs across the chip, and as a measure of the material quality, we chose low-field carrier mobility. The low-field mobility varied across the chip from 600 cm 2 /Vs to 2000 cm 2 /Vs, while the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies varied from 20 GHz to 37 GHz. The relationship between these frequencies and the low-field mobility was observed experimentally and explained using a methodology based on a small-signal equivalent circuit model with parameters extracted from the drain resistance model and the charge-carrier velocity saturation model. Sensitivity analysis clarified the effects of equivalent-circuit parameters on the <inline-formula> <tex-math notation="LaTeX">{f} _{\mathrm{ T}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{f} _{\max } </tex-math></inline-formula> frequencies. To improve the GFET high-frequency performance, the transconductance was the most critical parameter, which could be improved by increasing the charge-carrier saturation velocity by selecting adjacent dielectric materials with optical phonon energies higher than that of SiO 2 .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2020.2988630</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2020, Vol.8, p.457-464
issn 2168-6734
2168-6734
language eng
recordid cdi_ieee_primary_9070193
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals
subjects Carrier mobility
contact resistances
Current carriers
Dielectrics
Equivalent circuits
Field effect transistors
Frequency measurement
Graphene
high frequency
Logic gates
Materials selection
Mathematical models
maximum frequency of oscillation
microwave electronics
Parameter sensitivity
Resistance
Saturation
Semiconductor devices
Sensitivity analysis
Silicon
Silicon dioxide
Transconductance
Transistors
transit frequency
Transport properties
title The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dependence%20of%20the%20High-Frequency%20Performance%20of%20Graphene%20Field-Effect%20Transistors%20on%20Channel%20Transport%20Properties&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Asad,%20Muhammad&rft.date=2020&rft.volume=8&rft.spage=457&rft.epage=464&rft.pages=457-464&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2020.2988630&rft_dat=%3Cproquest_ieee_%3E2401124805%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401124805&rft_id=info:pmid/&rft_ieee_id=9070193&rft_doaj_id=oai_doaj_org_article_356d226b5d3d4e8687e7e28e2f3bd0e5&rfr_iscdi=true