Thermal and Mechanical Analyses of Fiber Bragg Gratings-Embedded Polymer Diaphragms

This letter presents the development and thermal and mechanical considerations of sensing elements using different diaphragm materials which are embedded in optical fiber Bragg gratings (FBGs). Diaphragms made of polyurethane, polydimethylsiloxane (PDMS) and nitrile rubber were fabricated, and all o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2020-06, Vol.32 (11), p.623-626
Hauptverfasser: Leal-Junior, Arnaldo G., Frizera, Anselmo, Marques, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 11
container_start_page 623
container_title IEEE photonics technology letters
container_volume 32
creator Leal-Junior, Arnaldo G.
Frizera, Anselmo
Marques, Carlos
description This letter presents the development and thermal and mechanical considerations of sensing elements using different diaphragm materials which are embedded in optical fiber Bragg gratings (FBGs). Diaphragms made of polyurethane, polydimethylsiloxane (PDMS) and nitrile rubber were fabricated, and all of them with embedded FBGs. Tensile tests were performed in each material, showing the lower Young's modulus of the PDMS (0.8 MPa), which is orders of magnitude lower than the ones of polyurethane (2.0 MPa) and nitrile rubber (362.2 MPa). Moreover, the highest strain limit was obtained in the PDMS diaphragm (24.5%). These results indicated the potential for higher pressure sensitivity of the PDMS, which was confirmed in the pressure characterization tests (pressure sensitivity of 1.4 nm/kPa). In addition, temperature tests indicated a higher sensitivity of the nitrile rubber, which presented a sensitivity of 49.8 pm/°C. Considering applications in which there are simultaneous variation of pressure and temperature, the nitrile presented a cross-sensitivity of 0.01 nm kPa −1 °C −1 which is the lowest among the materials tested, indicating the possibility of obtaining the mitigation of temperature influence in the pressure response. It is also worth noting that the highest measurement range was obtained in the nitrile rubber diaphragm with linear responses in the range of pressures up to 3 kPa.
doi_str_mv 10.1109/LPT.2020.2988554
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9069892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9069892</ieee_id><sourcerecordid>2396869665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d73482d94266a5180924e1f1773ba4fab2d2de11b8f1a76db761772be6d5233d3</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjeTbxs4nmx03a77RER0AQjiXhuuttZWLIf2MKB_94SiKd5k_feZPIj5BHoCIDql8VyNWKU0RHTSmWZuCID0AJSCrm4jppGDcCzW3IXwpZSEBkXA_K92qBvbZPYziWfWG5sV5dxHXe2OQYMSV8ls7pAn7x6u14nc2_3dbcO6bQt0Dl0ybJvjm3032q728RMG-7JTWWbgA-XOSQ_s-lq8p4uvuYfk_EiLZmGfepyLhRzWjApbQaKaiYQKshzXlhR2YI55hCgUBXYXLoil9FjBUqXMc4dH5Ln892d738PGPZm2x98fDwYxrVUUkuZxRQ9p0rfh-CxMjtft9YfDVBzQmciOnNCZy7oYuXpXKkR8T-uqdRKM_4HtZRo_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396869665</pqid></control><display><type>article</type><title>Thermal and Mechanical Analyses of Fiber Bragg Gratings-Embedded Polymer Diaphragms</title><source>IEEE Electronic Library (IEL)</source><creator>Leal-Junior, Arnaldo G. ; Frizera, Anselmo ; Marques, Carlos</creator><creatorcontrib>Leal-Junior, Arnaldo G. ; Frizera, Anselmo ; Marques, Carlos</creatorcontrib><description>This letter presents the development and thermal and mechanical considerations of sensing elements using different diaphragm materials which are embedded in optical fiber Bragg gratings (FBGs). Diaphragms made of polyurethane, polydimethylsiloxane (PDMS) and nitrile rubber were fabricated, and all of them with embedded FBGs. Tensile tests were performed in each material, showing the lower Young's modulus of the PDMS (0.8 MPa), which is orders of magnitude lower than the ones of polyurethane (2.0 MPa) and nitrile rubber (362.2 MPa). Moreover, the highest strain limit was obtained in the PDMS diaphragm (24.5%). These results indicated the potential for higher pressure sensitivity of the PDMS, which was confirmed in the pressure characterization tests (pressure sensitivity of 1.4 nm/kPa). In addition, temperature tests indicated a higher sensitivity of the nitrile rubber, which presented a sensitivity of 49.8 pm/°C. Considering applications in which there are simultaneous variation of pressure and temperature, the nitrile presented a cross-sensitivity of 0.01 nm kPa −1 °C −1 which is the lowest among the materials tested, indicating the possibility of obtaining the mitigation of temperature influence in the pressure response. It is also worth noting that the highest measurement range was obtained in the nitrile rubber diaphragm with linear responses in the range of pressures up to 3 kPa.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2020.2988554</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bragg gratings ; Diaphragms ; Diaphragms (mechanics) ; fiber Bragg gratings ; Fiber gratings ; Modulus of elasticity ; Nitrile rubber ; Optical fibers ; Polydimethylsiloxane ; polymers ; Polyurethane resins ; pressure sensors ; Rubber ; Sensitivity ; Silicone resins ; Strain ; Temperature sensors ; Tensile tests</subject><ispartof>IEEE photonics technology letters, 2020-06, Vol.32 (11), p.623-626</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d73482d94266a5180924e1f1773ba4fab2d2de11b8f1a76db761772be6d5233d3</citedby><cites>FETCH-LOGICAL-c291t-d73482d94266a5180924e1f1773ba4fab2d2de11b8f1a76db761772be6d5233d3</cites><orcidid>0000-0002-0687-3967 ; 0000-0002-9075-0619 ; 0000-0002-8596-5092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9069892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9069892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leal-Junior, Arnaldo G.</creatorcontrib><creatorcontrib>Frizera, Anselmo</creatorcontrib><creatorcontrib>Marques, Carlos</creatorcontrib><title>Thermal and Mechanical Analyses of Fiber Bragg Gratings-Embedded Polymer Diaphragms</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>This letter presents the development and thermal and mechanical considerations of sensing elements using different diaphragm materials which are embedded in optical fiber Bragg gratings (FBGs). Diaphragms made of polyurethane, polydimethylsiloxane (PDMS) and nitrile rubber were fabricated, and all of them with embedded FBGs. Tensile tests were performed in each material, showing the lower Young's modulus of the PDMS (0.8 MPa), which is orders of magnitude lower than the ones of polyurethane (2.0 MPa) and nitrile rubber (362.2 MPa). Moreover, the highest strain limit was obtained in the PDMS diaphragm (24.5%). These results indicated the potential for higher pressure sensitivity of the PDMS, which was confirmed in the pressure characterization tests (pressure sensitivity of 1.4 nm/kPa). In addition, temperature tests indicated a higher sensitivity of the nitrile rubber, which presented a sensitivity of 49.8 pm/°C. Considering applications in which there are simultaneous variation of pressure and temperature, the nitrile presented a cross-sensitivity of 0.01 nm kPa −1 °C −1 which is the lowest among the materials tested, indicating the possibility of obtaining the mitigation of temperature influence in the pressure response. It is also worth noting that the highest measurement range was obtained in the nitrile rubber diaphragm with linear responses in the range of pressures up to 3 kPa.</description><subject>Bragg gratings</subject><subject>Diaphragms</subject><subject>Diaphragms (mechanics)</subject><subject>fiber Bragg gratings</subject><subject>Fiber gratings</subject><subject>Modulus of elasticity</subject><subject>Nitrile rubber</subject><subject>Optical fibers</subject><subject>Polydimethylsiloxane</subject><subject>polymers</subject><subject>Polyurethane resins</subject><subject>pressure sensors</subject><subject>Rubber</subject><subject>Sensitivity</subject><subject>Silicone resins</subject><subject>Strain</subject><subject>Temperature sensors</subject><subject>Tensile tests</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxRujiYjeTbxs4nmx03a77RER0AQjiXhuuttZWLIf2MKB_94SiKd5k_feZPIj5BHoCIDql8VyNWKU0RHTSmWZuCID0AJSCrm4jppGDcCzW3IXwpZSEBkXA_K92qBvbZPYziWfWG5sV5dxHXe2OQYMSV8ls7pAn7x6u14nc2_3dbcO6bQt0Dl0ybJvjm3032q728RMG-7JTWWbgA-XOSQ_s-lq8p4uvuYfk_EiLZmGfepyLhRzWjApbQaKaiYQKshzXlhR2YI55hCgUBXYXLoil9FjBUqXMc4dH5Ln892d738PGPZm2x98fDwYxrVUUkuZxRQ9p0rfh-CxMjtft9YfDVBzQmciOnNCZy7oYuXpXKkR8T-uqdRKM_4HtZRo_w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Leal-Junior, Arnaldo G.</creator><creator>Frizera, Anselmo</creator><creator>Marques, Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0687-3967</orcidid><orcidid>https://orcid.org/0000-0002-9075-0619</orcidid><orcidid>https://orcid.org/0000-0002-8596-5092</orcidid></search><sort><creationdate>20200601</creationdate><title>Thermal and Mechanical Analyses of Fiber Bragg Gratings-Embedded Polymer Diaphragms</title><author>Leal-Junior, Arnaldo G. ; Frizera, Anselmo ; Marques, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d73482d94266a5180924e1f1773ba4fab2d2de11b8f1a76db761772be6d5233d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bragg gratings</topic><topic>Diaphragms</topic><topic>Diaphragms (mechanics)</topic><topic>fiber Bragg gratings</topic><topic>Fiber gratings</topic><topic>Modulus of elasticity</topic><topic>Nitrile rubber</topic><topic>Optical fibers</topic><topic>Polydimethylsiloxane</topic><topic>polymers</topic><topic>Polyurethane resins</topic><topic>pressure sensors</topic><topic>Rubber</topic><topic>Sensitivity</topic><topic>Silicone resins</topic><topic>Strain</topic><topic>Temperature sensors</topic><topic>Tensile tests</topic><toplevel>online_resources</toplevel><creatorcontrib>Leal-Junior, Arnaldo G.</creatorcontrib><creatorcontrib>Frizera, Anselmo</creatorcontrib><creatorcontrib>Marques, Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leal-Junior, Arnaldo G.</au><au>Frizera, Anselmo</au><au>Marques, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Mechanical Analyses of Fiber Bragg Gratings-Embedded Polymer Diaphragms</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><spage>623</spage><epage>626</epage><pages>623-626</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>This letter presents the development and thermal and mechanical considerations of sensing elements using different diaphragm materials which are embedded in optical fiber Bragg gratings (FBGs). Diaphragms made of polyurethane, polydimethylsiloxane (PDMS) and nitrile rubber were fabricated, and all of them with embedded FBGs. Tensile tests were performed in each material, showing the lower Young's modulus of the PDMS (0.8 MPa), which is orders of magnitude lower than the ones of polyurethane (2.0 MPa) and nitrile rubber (362.2 MPa). Moreover, the highest strain limit was obtained in the PDMS diaphragm (24.5%). These results indicated the potential for higher pressure sensitivity of the PDMS, which was confirmed in the pressure characterization tests (pressure sensitivity of 1.4 nm/kPa). In addition, temperature tests indicated a higher sensitivity of the nitrile rubber, which presented a sensitivity of 49.8 pm/°C. Considering applications in which there are simultaneous variation of pressure and temperature, the nitrile presented a cross-sensitivity of 0.01 nm kPa −1 °C −1 which is the lowest among the materials tested, indicating the possibility of obtaining the mitigation of temperature influence in the pressure response. It is also worth noting that the highest measurement range was obtained in the nitrile rubber diaphragm with linear responses in the range of pressures up to 3 kPa.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2020.2988554</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0687-3967</orcidid><orcidid>https://orcid.org/0000-0002-9075-0619</orcidid><orcidid>https://orcid.org/0000-0002-8596-5092</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2020-06, Vol.32 (11), p.623-626
issn 1041-1135
1941-0174
language eng
recordid cdi_ieee_primary_9069892
source IEEE Electronic Library (IEL)
subjects Bragg gratings
Diaphragms
Diaphragms (mechanics)
fiber Bragg gratings
Fiber gratings
Modulus of elasticity
Nitrile rubber
Optical fibers
Polydimethylsiloxane
polymers
Polyurethane resins
pressure sensors
Rubber
Sensitivity
Silicone resins
Strain
Temperature sensors
Tensile tests
title Thermal and Mechanical Analyses of Fiber Bragg Gratings-Embedded Polymer Diaphragms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Mechanical%20Analyses%20of%20Fiber%20Bragg%20Gratings-Embedded%20Polymer%20Diaphragms&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Leal-Junior,%20Arnaldo%20G.&rft.date=2020-06-01&rft.volume=32&rft.issue=11&rft.spage=623&rft.epage=626&rft.pages=623-626&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2020.2988554&rft_dat=%3Cproquest_RIE%3E2396869665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396869665&rft_id=info:pmid/&rft_ieee_id=9069892&rfr_iscdi=true