Improving the classification accuracy of the scanning n-tuple method
In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1049 vol.2 |
---|---|
container_issue | |
container_start_page | 1046 |
container_title | |
container_volume | 2 |
creator | Tambouratzis, G. |
description | In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose algorithm that improves the scanning n-tuple performance in hard classification tasks, by focusing on the characteristics of the pattern space. Experimental results indicate that the use of the algorithm results in a substantial improvement of the scanning n-tuple classification performance in comparison to previous results. This improvement is shown to be equivalent to that achieved by employing structural knowledge regarding the specific pattern space. |
doi_str_mv | 10.1109/ICPR.2000.906254 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_906254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>906254</ieee_id><sourcerecordid>906254</sourcerecordid><originalsourceid>FETCH-ieee_primary_9062543</originalsourceid><addsrcrecordid>eNp9jrsOgjAUQG98JIK6G6f-AHgLlMeMGtmMcSdNLVIDhVAw4e-Nj9npDOcMB2BD0aUUk12Wni-uh4hugqHHgglYXuxTJwoiNgUbozBhGDEMZ2BRZNQJQkYXYBvzQPTQZ7EF-6xuu-ap9J30pSSi4saoQgneq0YTLsTQcTGSpvhoI7jW71Y7_dBWktSyL5vbCuYFr4xc_7iE7fFwTU-OklLmbadq3o35d9L_K1_kbD0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving the classification accuracy of the scanning n-tuple method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tambouratzis, G.</creator><creatorcontrib>Tambouratzis, G.</creatorcontrib><description>In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose algorithm that improves the scanning n-tuple performance in hard classification tasks, by focusing on the characteristics of the pattern space. Experimental results indicate that the use of the algorithm results in a substantial improvement of the scanning n-tuple classification performance in comparison to previous results. This improvement is shown to be equivalent to that achieved by employing structural knowledge regarding the specific pattern space.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769507506</identifier><identifier>ISBN: 9780769507507</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.906254</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Character recognition ; Frequency ; Handwriting recognition ; Natural languages ; Neural networks ; Pattern recognition ; Retina ; Speech processing</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.2, p.1046-1049 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/906254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/906254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tambouratzis, G.</creatorcontrib><title>Improving the classification accuracy of the scanning n-tuple method</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose algorithm that improves the scanning n-tuple performance in hard classification tasks, by focusing on the characteristics of the pattern space. Experimental results indicate that the use of the algorithm results in a substantial improvement of the scanning n-tuple classification performance in comparison to previous results. This improvement is shown to be equivalent to that achieved by employing structural knowledge regarding the specific pattern space.</description><subject>Algorithm design and analysis</subject><subject>Character recognition</subject><subject>Frequency</subject><subject>Handwriting recognition</subject><subject>Natural languages</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Retina</subject><subject>Speech processing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769507506</isbn><isbn>9780769507507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrsOgjAUQG98JIK6G6f-AHgLlMeMGtmMcSdNLVIDhVAw4e-Nj9npDOcMB2BD0aUUk12Wni-uh4hugqHHgglYXuxTJwoiNgUbozBhGDEMZ2BRZNQJQkYXYBvzQPTQZ7EF-6xuu-ap9J30pSSi4saoQgneq0YTLsTQcTGSpvhoI7jW71Y7_dBWktSyL5vbCuYFr4xc_7iE7fFwTU-OklLmbadq3o35d9L_K1_kbD0A</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Tambouratzis, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Improving the classification accuracy of the scanning n-tuple method</title><author>Tambouratzis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9062543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithm design and analysis</topic><topic>Character recognition</topic><topic>Frequency</topic><topic>Handwriting recognition</topic><topic>Natural languages</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Retina</topic><topic>Speech processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tambouratzis, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tambouratzis, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the classification accuracy of the scanning n-tuple method</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>1046</spage><epage>1049 vol.2</epage><pages>1046-1049 vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769507506</isbn><isbn>9780769507507</isbn><abstract>In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose algorithm that improves the scanning n-tuple performance in hard classification tasks, by focusing on the characteristics of the pattern space. Experimental results indicate that the use of the algorithm results in a substantial improvement of the scanning n-tuple classification performance in comparison to previous results. This improvement is shown to be equivalent to that achieved by employing structural knowledge regarding the specific pattern space.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.906254</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.2, p.1046-1049 vol.2 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_906254 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Character recognition Frequency Handwriting recognition Natural languages Neural networks Pattern recognition Retina Speech processing |
title | Improving the classification accuracy of the scanning n-tuple method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20classification%20accuracy%20of%20the%20scanning%20n-tuple%20method&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Tambouratzis,%20G.&rft.date=2000&rft.volume=2&rft.spage=1046&rft.epage=1049%20vol.2&rft.pages=1046-1049%20vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769507506&rft.isbn_list=9780769507507&rft_id=info:doi/10.1109/ICPR.2000.906254&rft_dat=%3Cieee_6IE%3E906254%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=906254&rfr_iscdi=true |