Improving the classification accuracy of the scanning n-tuple method

In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tambouratzis, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049 vol.2
container_issue
container_start_page 1046
container_title
container_volume 2
creator Tambouratzis, G.
description In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose algorithm that improves the scanning n-tuple performance in hard classification tasks, by focusing on the characteristics of the pattern space. Experimental results indicate that the use of the algorithm results in a substantial improvement of the scanning n-tuple classification performance in comparison to previous results. This improvement is shown to be equivalent to that achieved by employing structural knowledge regarding the specific pattern space.
doi_str_mv 10.1109/ICPR.2000.906254
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_906254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>906254</ieee_id><sourcerecordid>906254</sourcerecordid><originalsourceid>FETCH-ieee_primary_9062543</originalsourceid><addsrcrecordid>eNp9jrsOgjAUQG98JIK6G6f-AHgLlMeMGtmMcSdNLVIDhVAw4e-Nj9npDOcMB2BD0aUUk12Wni-uh4hugqHHgglYXuxTJwoiNgUbozBhGDEMZ2BRZNQJQkYXYBvzQPTQZ7EF-6xuu-ap9J30pSSi4saoQgneq0YTLsTQcTGSpvhoI7jW71Y7_dBWktSyL5vbCuYFr4xc_7iE7fFwTU-OklLmbadq3o35d9L_K1_kbD0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving the classification accuracy of the scanning n-tuple method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tambouratzis, G.</creator><creatorcontrib>Tambouratzis, G.</creatorcontrib><description>In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose algorithm that improves the scanning n-tuple performance in hard classification tasks, by focusing on the characteristics of the pattern space. Experimental results indicate that the use of the algorithm results in a substantial improvement of the scanning n-tuple classification performance in comparison to previous results. This improvement is shown to be equivalent to that achieved by employing structural knowledge regarding the specific pattern space.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769507506</identifier><identifier>ISBN: 9780769507507</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.906254</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Character recognition ; Frequency ; Handwriting recognition ; Natural languages ; Neural networks ; Pattern recognition ; Retina ; Speech processing</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.2, p.1046-1049 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/906254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/906254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tambouratzis, G.</creatorcontrib><title>Improving the classification accuracy of the scanning n-tuple method</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose algorithm that improves the scanning n-tuple performance in hard classification tasks, by focusing on the characteristics of the pattern space. Experimental results indicate that the use of the algorithm results in a substantial improvement of the scanning n-tuple classification performance in comparison to previous results. This improvement is shown to be equivalent to that achieved by employing structural knowledge regarding the specific pattern space.</description><subject>Algorithm design and analysis</subject><subject>Character recognition</subject><subject>Frequency</subject><subject>Handwriting recognition</subject><subject>Natural languages</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Retina</subject><subject>Speech processing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769507506</isbn><isbn>9780769507507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrsOgjAUQG98JIK6G6f-AHgLlMeMGtmMcSdNLVIDhVAw4e-Nj9npDOcMB2BD0aUUk12Wni-uh4hugqHHgglYXuxTJwoiNgUbozBhGDEMZ2BRZNQJQkYXYBvzQPTQZ7EF-6xuu-ap9J30pSSi4saoQgneq0YTLsTQcTGSpvhoI7jW71Y7_dBWktSyL5vbCuYFr4xc_7iE7fFwTU-OklLmbadq3o35d9L_K1_kbD0A</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Tambouratzis, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Improving the classification accuracy of the scanning n-tuple method</title><author>Tambouratzis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9062543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithm design and analysis</topic><topic>Character recognition</topic><topic>Frequency</topic><topic>Handwriting recognition</topic><topic>Natural languages</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Retina</topic><topic>Speech processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tambouratzis, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tambouratzis, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the classification accuracy of the scanning n-tuple method</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>1046</spage><epage>1049 vol.2</epage><pages>1046-1049 vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769507506</isbn><isbn>9780769507507</isbn><abstract>In this article, the application of the scanning n-tuple technique to classification tasks is studied. The performance of this technique is examined in a handwritten character recognition task where the accuracy is initially low. This task is employed as a case study for designing a general-purpose algorithm that improves the scanning n-tuple performance in hard classification tasks, by focusing on the characteristics of the pattern space. Experimental results indicate that the use of the algorithm results in a substantial improvement of the scanning n-tuple classification performance in comparison to previous results. This improvement is shown to be equivalent to that achieved by employing structural knowledge regarding the specific pattern space.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.906254</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.2, p.1046-1049 vol.2
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_906254
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Character recognition
Frequency
Handwriting recognition
Natural languages
Neural networks
Pattern recognition
Retina
Speech processing
title Improving the classification accuracy of the scanning n-tuple method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20classification%20accuracy%20of%20the%20scanning%20n-tuple%20method&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Tambouratzis,%20G.&rft.date=2000&rft.volume=2&rft.spage=1046&rft.epage=1049%20vol.2&rft.pages=1046-1049%20vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769507506&rft.isbn_list=9780769507507&rft_id=info:doi/10.1109/ICPR.2000.906254&rft_dat=%3Cieee_6IE%3E906254%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=906254&rfr_iscdi=true