Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning
Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for auto...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.65187-65196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65196 |
---|---|
container_issue | |
container_start_page | 65187 |
container_title | IEEE access |
container_volume | 8 |
creator | Usman, Imran Almejalli, Khaled A. |
description | Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a set of 28 selected features from the preprocessed fundus images in order to evolve a mathematical expression. Through the binearization of the fitness scores, the optimal expression is evolved generation by generation through a stepwise enhancement process. The best expression is then used as a classifier for real world applications. Experimental results using three publically available datasets validate the usefulness of the proposed technique and its ability to outperform the state of the art contemporary approaches. |
doi_str_mv | 10.1109/ACCESS.2020.2985543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9056469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9056469</ieee_id><doaj_id>oai_doaj_org_article_947e9286884e47edaa9749466b31c6e8</doaj_id><sourcerecordid>2453701487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e1ce821c5c585e0abe6bc69b6da5cad7ce286a6335a240992ae17886e5f10e833</originalsourceid><addsrcrecordid>eNpNUctOIzEQtFYgLcryBVws7XmC32Mfo0DYSKw4BE57sBxPJ3KU2GB7Dvw9honQ9qVbparqVhdCN5TMKSXmdrFc3m82c0YYmTOjpRT8B7piVJmOS64u_pt_outSDqSVbpDsr9C_daxwPIY9xIoXY00nV2HAd1DB15AiTjv8N_icXIQxv5dTwSHi1RiHseD1ye2h4JcS4h6vwNUxQ7eBip_H2KBf6HLnjgWuz32GXlb3z8s_3ePTw3q5eOy8ILp2QD1oRr30Uksgbgtq65XZqsFJ74beA9PKKc6lY4IYwxzQXmsFckcJaM5naD35Dskd7GsOJ5ffbXLBfgEp763LNfgjWCN6MM1OawFtHJwzvTBCqS2nXjWzGfo9eb3m9DZCqfaQxhzb-ZYJyXtChe4bi0-s9phSMuy-t1JiP0OxUyj2MxR7DqWpbiZVAIBvhSFSCWX4B4u4iAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453701487</pqid></control><display><type>article</type><title>Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Usman, Imran ; Almejalli, Khaled A.</creator><creatorcontrib>Usman, Imran ; Almejalli, Khaled A.</creatorcontrib><description>Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a set of 28 selected features from the preprocessed fundus images in order to evolve a mathematical expression. Through the binearization of the fitness scores, the optimal expression is evolved generation by generation through a stepwise enhancement process. The best expression is then used as a classifier for real world applications. Experimental results using three publically available datasets validate the usefulness of the proposed technique and its ability to outperform the state of the art contemporary approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2985543</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic microaneurysms detection ; Diabetes ; Diabetes mellitus ; diabetic retinopathy ; Feature extraction ; fundus images ; Genetic algorithms ; genetic programming ; Image color analysis ; Retinopathy ; Sociology ; Statistics ; Training</subject><ispartof>IEEE access, 2020, Vol.8, p.65187-65196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e1ce821c5c585e0abe6bc69b6da5cad7ce286a6335a240992ae17886e5f10e833</citedby><cites>FETCH-LOGICAL-c408t-e1ce821c5c585e0abe6bc69b6da5cad7ce286a6335a240992ae17886e5f10e833</cites><orcidid>0000-0002-6881-7450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9056469$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Usman, Imran</creatorcontrib><creatorcontrib>Almejalli, Khaled A.</creatorcontrib><title>Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a set of 28 selected features from the preprocessed fundus images in order to evolve a mathematical expression. Through the binearization of the fitness scores, the optimal expression is evolved generation by generation through a stepwise enhancement process. The best expression is then used as a classifier for real world applications. Experimental results using three publically available datasets validate the usefulness of the proposed technique and its ability to outperform the state of the art contemporary approaches.</description><subject>Automatic microaneurysms detection</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>diabetic retinopathy</subject><subject>Feature extraction</subject><subject>fundus images</subject><subject>Genetic algorithms</subject><subject>genetic programming</subject><subject>Image color analysis</subject><subject>Retinopathy</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOIzEQtFYgLcryBVws7XmC32Mfo0DYSKw4BE57sBxPJ3KU2GB7Dvw9honQ9qVbparqVhdCN5TMKSXmdrFc3m82c0YYmTOjpRT8B7piVJmOS64u_pt_outSDqSVbpDsr9C_daxwPIY9xIoXY00nV2HAd1DB15AiTjv8N_icXIQxv5dTwSHi1RiHseD1ye2h4JcS4h6vwNUxQ7eBip_H2KBf6HLnjgWuz32GXlb3z8s_3ePTw3q5eOy8ILp2QD1oRr30Uksgbgtq65XZqsFJ74beA9PKKc6lY4IYwxzQXmsFckcJaM5naD35Dskd7GsOJ5ffbXLBfgEp763LNfgjWCN6MM1OawFtHJwzvTBCqS2nXjWzGfo9eb3m9DZCqfaQxhzb-ZYJyXtChe4bi0-s9phSMuy-t1JiP0OxUyj2MxR7DqWpbiZVAIBvhSFSCWX4B4u4iAg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Usman, Imran</creator><creator>Almejalli, Khaled A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6881-7450</orcidid></search><sort><creationdate>2020</creationdate><title>Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning</title><author>Usman, Imran ; Almejalli, Khaled A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e1ce821c5c585e0abe6bc69b6da5cad7ce286a6335a240992ae17886e5f10e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic microaneurysms detection</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>diabetic retinopathy</topic><topic>Feature extraction</topic><topic>fundus images</topic><topic>Genetic algorithms</topic><topic>genetic programming</topic><topic>Image color analysis</topic><topic>Retinopathy</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usman, Imran</creatorcontrib><creatorcontrib>Almejalli, Khaled A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usman, Imran</au><au>Almejalli, Khaled A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>65187</spage><epage>65196</epage><pages>65187-65196</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a set of 28 selected features from the preprocessed fundus images in order to evolve a mathematical expression. Through the binearization of the fitness scores, the optimal expression is evolved generation by generation through a stepwise enhancement process. The best expression is then used as a classifier for real world applications. Experimental results using three publically available datasets validate the usefulness of the proposed technique and its ability to outperform the state of the art contemporary approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2985543</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6881-7450</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.65187-65196 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9056469 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Automatic microaneurysms detection Diabetes Diabetes mellitus diabetic retinopathy Feature extraction fundus images Genetic algorithms genetic programming Image color analysis Retinopathy Sociology Statistics Training |
title | Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Automated%20Detection%20of%20Microaneurysms%20in%20Fundus%20Images%20Using%20Feature-Set%20Tuning&rft.jtitle=IEEE%20access&rft.au=Usman,%20Imran&rft.date=2020&rft.volume=8&rft.spage=65187&rft.epage=65196&rft.pages=65187-65196&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2985543&rft_dat=%3Cproquest_ieee_%3E2453701487%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453701487&rft_id=info:pmid/&rft_ieee_id=9056469&rft_doaj_id=oai_doaj_org_article_947e9286884e47edaa9749466b31c6e8&rfr_iscdi=true |