Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning

Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for auto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.65187-65196
Hauptverfasser: Usman, Imran, Almejalli, Khaled A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65196
container_issue
container_start_page 65187
container_title IEEE access
container_volume 8
creator Usman, Imran
Almejalli, Khaled A.
description Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a set of 28 selected features from the preprocessed fundus images in order to evolve a mathematical expression. Through the binearization of the fitness scores, the optimal expression is evolved generation by generation through a stepwise enhancement process. The best expression is then used as a classifier for real world applications. Experimental results using three publically available datasets validate the usefulness of the proposed technique and its ability to outperform the state of the art contemporary approaches.
doi_str_mv 10.1109/ACCESS.2020.2985543
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9056469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9056469</ieee_id><doaj_id>oai_doaj_org_article_947e9286884e47edaa9749466b31c6e8</doaj_id><sourcerecordid>2453701487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e1ce821c5c585e0abe6bc69b6da5cad7ce286a6335a240992ae17886e5f10e833</originalsourceid><addsrcrecordid>eNpNUctOIzEQtFYgLcryBVws7XmC32Mfo0DYSKw4BE57sBxPJ3KU2GB7Dvw9honQ9qVbparqVhdCN5TMKSXmdrFc3m82c0YYmTOjpRT8B7piVJmOS64u_pt_outSDqSVbpDsr9C_daxwPIY9xIoXY00nV2HAd1DB15AiTjv8N_icXIQxv5dTwSHi1RiHseD1ye2h4JcS4h6vwNUxQ7eBip_H2KBf6HLnjgWuz32GXlb3z8s_3ePTw3q5eOy8ILp2QD1oRr30Uksgbgtq65XZqsFJ74beA9PKKc6lY4IYwxzQXmsFckcJaM5naD35Dskd7GsOJ5ffbXLBfgEp763LNfgjWCN6MM1OawFtHJwzvTBCqS2nXjWzGfo9eb3m9DZCqfaQxhzb-ZYJyXtChe4bi0-s9phSMuy-t1JiP0OxUyj2MxR7DqWpbiZVAIBvhSFSCWX4B4u4iAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453701487</pqid></control><display><type>article</type><title>Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Usman, Imran ; Almejalli, Khaled A.</creator><creatorcontrib>Usman, Imran ; Almejalli, Khaled A.</creatorcontrib><description>Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a set of 28 selected features from the preprocessed fundus images in order to evolve a mathematical expression. Through the binearization of the fitness scores, the optimal expression is evolved generation by generation through a stepwise enhancement process. The best expression is then used as a classifier for real world applications. Experimental results using three publically available datasets validate the usefulness of the proposed technique and its ability to outperform the state of the art contemporary approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2985543</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic microaneurysms detection ; Diabetes ; Diabetes mellitus ; diabetic retinopathy ; Feature extraction ; fundus images ; Genetic algorithms ; genetic programming ; Image color analysis ; Retinopathy ; Sociology ; Statistics ; Training</subject><ispartof>IEEE access, 2020, Vol.8, p.65187-65196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e1ce821c5c585e0abe6bc69b6da5cad7ce286a6335a240992ae17886e5f10e833</citedby><cites>FETCH-LOGICAL-c408t-e1ce821c5c585e0abe6bc69b6da5cad7ce286a6335a240992ae17886e5f10e833</cites><orcidid>0000-0002-6881-7450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9056469$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Usman, Imran</creatorcontrib><creatorcontrib>Almejalli, Khaled A.</creatorcontrib><title>Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a set of 28 selected features from the preprocessed fundus images in order to evolve a mathematical expression. Through the binearization of the fitness scores, the optimal expression is evolved generation by generation through a stepwise enhancement process. The best expression is then used as a classifier for real world applications. Experimental results using three publically available datasets validate the usefulness of the proposed technique and its ability to outperform the state of the art contemporary approaches.</description><subject>Automatic microaneurysms detection</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>diabetic retinopathy</subject><subject>Feature extraction</subject><subject>fundus images</subject><subject>Genetic algorithms</subject><subject>genetic programming</subject><subject>Image color analysis</subject><subject>Retinopathy</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOIzEQtFYgLcryBVws7XmC32Mfo0DYSKw4BE57sBxPJ3KU2GB7Dvw9honQ9qVbparqVhdCN5TMKSXmdrFc3m82c0YYmTOjpRT8B7piVJmOS64u_pt_outSDqSVbpDsr9C_daxwPIY9xIoXY00nV2HAd1DB15AiTjv8N_icXIQxv5dTwSHi1RiHseD1ye2h4JcS4h6vwNUxQ7eBip_H2KBf6HLnjgWuz32GXlb3z8s_3ePTw3q5eOy8ILp2QD1oRr30Uksgbgtq65XZqsFJ74beA9PKKc6lY4IYwxzQXmsFckcJaM5naD35Dskd7GsOJ5ffbXLBfgEp763LNfgjWCN6MM1OawFtHJwzvTBCqS2nXjWzGfo9eb3m9DZCqfaQxhzb-ZYJyXtChe4bi0-s9phSMuy-t1JiP0OxUyj2MxR7DqWpbiZVAIBvhSFSCWX4B4u4iAg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Usman, Imran</creator><creator>Almejalli, Khaled A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6881-7450</orcidid></search><sort><creationdate>2020</creationdate><title>Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning</title><author>Usman, Imran ; Almejalli, Khaled A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e1ce821c5c585e0abe6bc69b6da5cad7ce286a6335a240992ae17886e5f10e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic microaneurysms detection</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>diabetic retinopathy</topic><topic>Feature extraction</topic><topic>fundus images</topic><topic>Genetic algorithms</topic><topic>genetic programming</topic><topic>Image color analysis</topic><topic>Retinopathy</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usman, Imran</creatorcontrib><creatorcontrib>Almejalli, Khaled A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usman, Imran</au><au>Almejalli, Khaled A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>65187</spage><epage>65196</epage><pages>65187-65196</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the widespread of diabetes mellitus and its associated complications, a need for early detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a set of 28 selected features from the preprocessed fundus images in order to evolve a mathematical expression. Through the binearization of the fitness scores, the optimal expression is evolved generation by generation through a stepwise enhancement process. The best expression is then used as a classifier for real world applications. Experimental results using three publically available datasets validate the usefulness of the proposed technique and its ability to outperform the state of the art contemporary approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2985543</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6881-7450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.65187-65196
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9056469
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Automatic microaneurysms detection
Diabetes
Diabetes mellitus
diabetic retinopathy
Feature extraction
fundus images
Genetic algorithms
genetic programming
Image color analysis
Retinopathy
Sociology
Statistics
Training
title Intelligent Automated Detection of Microaneurysms in Fundus Images Using Feature-Set Tuning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Automated%20Detection%20of%20Microaneurysms%20in%20Fundus%20Images%20Using%20Feature-Set%20Tuning&rft.jtitle=IEEE%20access&rft.au=Usman,%20Imran&rft.date=2020&rft.volume=8&rft.spage=65187&rft.epage=65196&rft.pages=65187-65196&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2985543&rft_dat=%3Cproquest_ieee_%3E2453701487%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453701487&rft_id=info:pmid/&rft_ieee_id=9056469&rft_doaj_id=oai_doaj_org_article_947e9286884e47edaa9749466b31c6e8&rfr_iscdi=true