Feature learning for recognition with Bayesian networks
Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning metho...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 vol.1 |
---|---|
container_issue | |
container_start_page | 17 |
container_title | |
container_volume | 1 |
creator | Piater, J.H. Grupen, R.A. |
description | Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning methods, and feature sets that are capable of expressing distinctions at any level of specificity or generality. We describe progress toward such a system that is based on an infinite combinatorial feature space. Feature primitives can be composed into increasing complex and specific compound features. Distinctive features are learned incrementally, and are incorporated into dynamically updated Bayesian network classifiers. Experimental results illustrate the applicability and potential of our approach. |
doi_str_mv | 10.1109/ICPR.2000.905267 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_905267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>905267</ieee_id><sourcerecordid>905267</sourcerecordid><originalsourceid>FETCH-ieee_primary_9052673</originalsourceid><addsrcrecordid>eNp9zr0OgjAUQOEbfxJB3Y1TXwC8BUphlWh0M8adNOaCVSymxRDe3kFnpzN8ywFYcQw5x3xzLE7nMELEMEcRpXIEXpTFPJCJFGPwUaa5QCkwnYDHUfAgSQWfge_cHTHCWGQeyD2p7m2JNaSs0aZmVWuZpWtbG93p1rBedze2VQM5rQwz1PWtfbgFTCvVOFr-Oof1fncpDoEmovJl9VPZofx-xX_xA6D4OGU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature learning for recognition with Bayesian networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Piater, J.H. ; Grupen, R.A.</creator><creatorcontrib>Piater, J.H. ; Grupen, R.A.</creatorcontrib><description>Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning methods, and feature sets that are capable of expressing distinctions at any level of specificity or generality. We describe progress toward such a system that is based on an infinite combinatorial feature space. Feature primitives can be composed into increasing complex and specific compound features. Distinctive features are learned incrementally, and are incorporated into dynamically updated Bayesian network classifiers. Experimental results illustrate the applicability and potential of our approach.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769507506</identifier><identifier>ISBN: 9780769507507</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.905267</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Bayesian methods ; Computer science ; Filters ; Image databases ; Image recognition ; Libraries ; Licenses ; Sampling methods</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.1, p.17-20 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/905267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/905267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Piater, J.H.</creatorcontrib><creatorcontrib>Grupen, R.A.</creatorcontrib><title>Feature learning for recognition with Bayesian networks</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning methods, and feature sets that are capable of expressing distinctions at any level of specificity or generality. We describe progress toward such a system that is based on an infinite combinatorial feature space. Feature primitives can be composed into increasing complex and specific compound features. Distinctive features are learned incrementally, and are incorporated into dynamically updated Bayesian network classifiers. Experimental results illustrate the applicability and potential of our approach.</description><subject>Algorithm design and analysis</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>Filters</subject><subject>Image databases</subject><subject>Image recognition</subject><subject>Libraries</subject><subject>Licenses</subject><subject>Sampling methods</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769507506</isbn><isbn>9780769507507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9zr0OgjAUQOEbfxJB3Y1TXwC8BUphlWh0M8adNOaCVSymxRDe3kFnpzN8ywFYcQw5x3xzLE7nMELEMEcRpXIEXpTFPJCJFGPwUaa5QCkwnYDHUfAgSQWfge_cHTHCWGQeyD2p7m2JNaSs0aZmVWuZpWtbG93p1rBedze2VQM5rQwz1PWtfbgFTCvVOFr-Oof1fncpDoEmovJl9VPZofx-xX_xA6D4OGU</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Piater, J.H.</creator><creator>Grupen, R.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Feature learning for recognition with Bayesian networks</title><author>Piater, J.H. ; Grupen, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9052673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithm design and analysis</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>Filters</topic><topic>Image databases</topic><topic>Image recognition</topic><topic>Libraries</topic><topic>Licenses</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Piater, J.H.</creatorcontrib><creatorcontrib>Grupen, R.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piater, J.H.</au><au>Grupen, R.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature learning for recognition with Bayesian networks</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>17</spage><epage>20 vol.1</epage><pages>17-20 vol.1</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769507506</isbn><isbn>9780769507507</isbn><abstract>Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning methods, and feature sets that are capable of expressing distinctions at any level of specificity or generality. We describe progress toward such a system that is based on an infinite combinatorial feature space. Feature primitives can be composed into increasing complex and specific compound features. Distinctive features are learned incrementally, and are incorporated into dynamically updated Bayesian network classifiers. Experimental results illustrate the applicability and potential of our approach.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.905267</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.1, p.17-20 vol.1 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_905267 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Bayesian methods Computer science Filters Image databases Image recognition Libraries Licenses Sampling methods |
title | Feature learning for recognition with Bayesian networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20learning%20for%20recognition%20with%20Bayesian%20networks&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Piater,%20J.H.&rft.date=2000&rft.volume=1&rft.spage=17&rft.epage=20%20vol.1&rft.pages=17-20%20vol.1&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769507506&rft.isbn_list=9780769507507&rft_id=info:doi/10.1109/ICPR.2000.905267&rft_dat=%3Cieee_6IE%3E905267%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=905267&rfr_iscdi=true |