Feature learning for recognition with Bayesian networks

Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Piater, J.H., Grupen, R.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20 vol.1
container_issue
container_start_page 17
container_title
container_volume 1
creator Piater, J.H.
Grupen, R.A.
description Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning methods, and feature sets that are capable of expressing distinctions at any level of specificity or generality. We describe progress toward such a system that is based on an infinite combinatorial feature space. Feature primitives can be composed into increasing complex and specific compound features. Distinctive features are learned incrementally, and are incorporated into dynamically updated Bayesian network classifiers. Experimental results illustrate the applicability and potential of our approach.
doi_str_mv 10.1109/ICPR.2000.905267
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_905267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>905267</ieee_id><sourcerecordid>905267</sourcerecordid><originalsourceid>FETCH-ieee_primary_9052673</originalsourceid><addsrcrecordid>eNp9zr0OgjAUQOEbfxJB3Y1TXwC8BUphlWh0M8adNOaCVSymxRDe3kFnpzN8ywFYcQw5x3xzLE7nMELEMEcRpXIEXpTFPJCJFGPwUaa5QCkwnYDHUfAgSQWfge_cHTHCWGQeyD2p7m2JNaSs0aZmVWuZpWtbG93p1rBedze2VQM5rQwz1PWtfbgFTCvVOFr-Oof1fncpDoEmovJl9VPZofx-xX_xA6D4OGU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature learning for recognition with Bayesian networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Piater, J.H. ; Grupen, R.A.</creator><creatorcontrib>Piater, J.H. ; Grupen, R.A.</creatorcontrib><description>Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning methods, and feature sets that are capable of expressing distinctions at any level of specificity or generality. We describe progress toward such a system that is based on an infinite combinatorial feature space. Feature primitives can be composed into increasing complex and specific compound features. Distinctive features are learned incrementally, and are incorporated into dynamically updated Bayesian network classifiers. Experimental results illustrate the applicability and potential of our approach.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769507506</identifier><identifier>ISBN: 9780769507507</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.905267</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Bayesian methods ; Computer science ; Filters ; Image databases ; Image recognition ; Libraries ; Licenses ; Sampling methods</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.1, p.17-20 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/905267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/905267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Piater, J.H.</creatorcontrib><creatorcontrib>Grupen, R.A.</creatorcontrib><title>Feature learning for recognition with Bayesian networks</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning methods, and feature sets that are capable of expressing distinctions at any level of specificity or generality. We describe progress toward such a system that is based on an infinite combinatorial feature space. Feature primitives can be composed into increasing complex and specific compound features. Distinctive features are learned incrementally, and are incorporated into dynamically updated Bayesian network classifiers. Experimental results illustrate the applicability and potential of our approach.</description><subject>Algorithm design and analysis</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>Filters</subject><subject>Image databases</subject><subject>Image recognition</subject><subject>Libraries</subject><subject>Licenses</subject><subject>Sampling methods</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769507506</isbn><isbn>9780769507507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9zr0OgjAUQOEbfxJB3Y1TXwC8BUphlWh0M8adNOaCVSymxRDe3kFnpzN8ywFYcQw5x3xzLE7nMELEMEcRpXIEXpTFPJCJFGPwUaa5QCkwnYDHUfAgSQWfge_cHTHCWGQeyD2p7m2JNaSs0aZmVWuZpWtbG93p1rBedze2VQM5rQwz1PWtfbgFTCvVOFr-Oof1fncpDoEmovJl9VPZofx-xX_xA6D4OGU</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Piater, J.H.</creator><creator>Grupen, R.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Feature learning for recognition with Bayesian networks</title><author>Piater, J.H. ; Grupen, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9052673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithm design and analysis</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>Filters</topic><topic>Image databases</topic><topic>Image recognition</topic><topic>Libraries</topic><topic>Licenses</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Piater, J.H.</creatorcontrib><creatorcontrib>Grupen, R.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piater, J.H.</au><au>Grupen, R.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature learning for recognition with Bayesian networks</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>17</spage><epage>20 vol.1</epage><pages>17-20 vol.1</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769507506</isbn><isbn>9780769507507</isbn><abstract>Many realistic visual recognition tasks are "open" in the sense that the number and nature of the categories to be learned are not initially known, and there is no closed set of training images available to the system. We argue that open recognition tasks require incremental learning methods, and feature sets that are capable of expressing distinctions at any level of specificity or generality. We describe progress toward such a system that is based on an infinite combinatorial feature space. Feature primitives can be composed into increasing complex and specific compound features. Distinctive features are learned incrementally, and are incorporated into dynamically updated Bayesian network classifiers. Experimental results illustrate the applicability and potential of our approach.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.905267</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.1, p.17-20 vol.1
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_905267
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Bayesian methods
Computer science
Filters
Image databases
Image recognition
Libraries
Licenses
Sampling methods
title Feature learning for recognition with Bayesian networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20learning%20for%20recognition%20with%20Bayesian%20networks&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Piater,%20J.H.&rft.date=2000&rft.volume=1&rft.spage=17&rft.epage=20%20vol.1&rft.pages=17-20%20vol.1&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769507506&rft.isbn_list=9780769507507&rft_id=info:doi/10.1109/ICPR.2000.905267&rft_dat=%3Cieee_6IE%3E905267%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=905267&rfr_iscdi=true