Defect Analysis and Parallel Testing for 3D Hybrid CMOS-Memristor Memory

CMOS Molecular (CMOL) architecture, which can alleviate the sneak path problem of one memristor (1R) crossbars and limit its power consumption, can be used in a large-scale memory system. In this article, we analyze the electrical defects in a CMOL circuit including open and bridge. A parallel March...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computing 2021-04, Vol.9 (2), p.745-758
Hauptverfasser: Liu, Peng, You, Zhiqiang, Wu, Jigang, Elimu, Michael, Wang, Weizheng, Cai, Shuo, Han, Yinhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 758
container_issue 2
container_start_page 745
container_title IEEE transactions on emerging topics in computing
container_volume 9
creator Liu, Peng
You, Zhiqiang
Wu, Jigang
Elimu, Michael
Wang, Weizheng
Cai, Shuo
Han, Yinhe
description CMOS Molecular (CMOL) architecture, which can alleviate the sneak path problem of one memristor (1R) crossbars and limit its power consumption, can be used in a large-scale memory system. In this article, we analyze the electrical defects in a CMOL circuit including open and bridge. A parallel March-like test algorithm is presented for the CMOL architecture, which covers the faults caused by the open and bridge defects and parametric variations during its fabrication. Analysis results show that the test time of the proposed test algorithm is reduced significantly compared with the enhanced methods of March-MOM and March C* for CMOL architectures. The write time is reduced approximately 5n/4\times 5n/4× and n\times n× , respectively, where n n is the number of memristors attached to a nanowire segment. The read time is also reduced drastically. Finally, a design for testability (DFT) architecture is proposed to adapt the parallel March-like test algorithm. In compare with the short write time testing scheme, the proposed DFT can achieve 35.4 percent of reduction in area overhead, with 14.52 percent more power overhead kept the same delay in a CMOL circuit with 64 memory cells.
doi_str_mv 10.1109/TETC.2020.2982830
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9052438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9052438</ieee_id><sourcerecordid>2536865526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f16ba0daebd504434b8bb349e5550cd4e7e72c7f484602bd6a1e15fb04c51c353</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWLQfQLwEPG_N_80eS6tWaKlgPYckO5Et225Ntof99qa0iHOZB_Pe8Pgh9EDJhFJSPW9eNrMJI4xMWKWZ5uQKjRhVulClJNf_9C0ap7QleTRVlSpHaDGHAL7H071th9QkbPc1_rDRti20eAOpb_bfOHQR8zleDC42NZ6t1p_FCnaxSX0-ZNXF4R7dBNsmGF_2Hfp6zbUWxXL99j6bLgvPKt4XgSpnSW3B1ZIIwYXTznFRgZSS-FpACSXzZRBaKMJcrSwFKoMjwkvqueR36On89xC7n2PuZ7bdMeb2yTDJlVZSMpVd9OzysUspQjCH2OxsHAwl5sTMnJiZEzNzYZYzj-dMAwB__opIJrjmvxm-ZiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536865526</pqid></control><display><type>article</type><title>Defect Analysis and Parallel Testing for 3D Hybrid CMOS-Memristor Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Peng ; You, Zhiqiang ; Wu, Jigang ; Elimu, Michael ; Wang, Weizheng ; Cai, Shuo ; Han, Yinhe</creator><creatorcontrib>Liu, Peng ; You, Zhiqiang ; Wu, Jigang ; Elimu, Michael ; Wang, Weizheng ; Cai, Shuo ; Han, Yinhe</creatorcontrib><description><![CDATA[CMOS Molecular (CMOL) architecture, which can alleviate the sneak path problem of one memristor (1R) crossbars and limit its power consumption, can be used in a large-scale memory system. In this article, we analyze the electrical defects in a CMOL circuit including open and bridge. A parallel March-like test algorithm is presented for the CMOL architecture, which covers the faults caused by the open and bridge defects and parametric variations during its fabrication. Analysis results show that the test time of the proposed test algorithm is reduced significantly compared with the enhanced methods of March-MOM and March C* for CMOL architectures. The write time is reduced approximately <inline-formula><tex-math notation="LaTeX">5n/4\times</tex-math> <mml:math><mml:mrow><mml:mn>5</mml:mn><mml:mi>n</mml:mi><mml:mo>/</mml:mo><mml:mn>4</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="liu-ieq1-2982830.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">n\times</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="liu-ieq2-2982830.gif"/> </inline-formula>, respectively, where <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq3-2982830.gif"/> </inline-formula> is the number of memristors attached to a nanowire segment. The read time is also reduced drastically. Finally, a design for testability (DFT) architecture is proposed to adapt the parallel March-like test algorithm. In compare with the short write time testing scheme, the proposed DFT can achieve 35.4 percent of reduction in area overhead, with 14.52 percent more power overhead kept the same delay in a CMOL circuit with 64 memory cells.]]></description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2020.2982830</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuit faults ; Circuits ; CMOL ; CMOS ; Computer architecture ; Computer memory ; Defects ; Discrete Fourier transforms ; memristor ; Memristors ; Nanowires ; Non-volatile memory ; Power consumption ; Random access memory ; Resistance ; RRAM ; Testability ; Testing ; Testing time</subject><ispartof>IEEE transactions on emerging topics in computing, 2021-04, Vol.9 (2), p.745-758</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f16ba0daebd504434b8bb349e5550cd4e7e72c7f484602bd6a1e15fb04c51c353</citedby><cites>FETCH-LOGICAL-c293t-f16ba0daebd504434b8bb349e5550cd4e7e72c7f484602bd6a1e15fb04c51c353</cites><orcidid>0000-0003-4375-3187 ; 0000-0002-2329-502X ; 0000-0002-6470-9794 ; 0000-0001-9924-0685 ; 0000-0003-0904-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9052438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27631,27922,27923,54756,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9052438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>You, Zhiqiang</creatorcontrib><creatorcontrib>Wu, Jigang</creatorcontrib><creatorcontrib>Elimu, Michael</creatorcontrib><creatorcontrib>Wang, Weizheng</creatorcontrib><creatorcontrib>Cai, Shuo</creatorcontrib><creatorcontrib>Han, Yinhe</creatorcontrib><title>Defect Analysis and Parallel Testing for 3D Hybrid CMOS-Memristor Memory</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description><![CDATA[CMOS Molecular (CMOL) architecture, which can alleviate the sneak path problem of one memristor (1R) crossbars and limit its power consumption, can be used in a large-scale memory system. In this article, we analyze the electrical defects in a CMOL circuit including open and bridge. A parallel March-like test algorithm is presented for the CMOL architecture, which covers the faults caused by the open and bridge defects and parametric variations during its fabrication. Analysis results show that the test time of the proposed test algorithm is reduced significantly compared with the enhanced methods of March-MOM and March C* for CMOL architectures. The write time is reduced approximately <inline-formula><tex-math notation="LaTeX">5n/4\times</tex-math> <mml:math><mml:mrow><mml:mn>5</mml:mn><mml:mi>n</mml:mi><mml:mo>/</mml:mo><mml:mn>4</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="liu-ieq1-2982830.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">n\times</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="liu-ieq2-2982830.gif"/> </inline-formula>, respectively, where <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq3-2982830.gif"/> </inline-formula> is the number of memristors attached to a nanowire segment. The read time is also reduced drastically. Finally, a design for testability (DFT) architecture is proposed to adapt the parallel March-like test algorithm. In compare with the short write time testing scheme, the proposed DFT can achieve 35.4 percent of reduction in area overhead, with 14.52 percent more power overhead kept the same delay in a CMOL circuit with 64 memory cells.]]></description><subject>Algorithms</subject><subject>Circuit faults</subject><subject>Circuits</subject><subject>CMOL</subject><subject>CMOS</subject><subject>Computer architecture</subject><subject>Computer memory</subject><subject>Defects</subject><subject>Discrete Fourier transforms</subject><subject>memristor</subject><subject>Memristors</subject><subject>Nanowires</subject><subject>Non-volatile memory</subject><subject>Power consumption</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>RRAM</subject><subject>Testability</subject><subject>Testing</subject><subject>Testing time</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWLQfQLwEPG_N_80eS6tWaKlgPYckO5Et225Ntof99qa0iHOZB_Pe8Pgh9EDJhFJSPW9eNrMJI4xMWKWZ5uQKjRhVulClJNf_9C0ap7QleTRVlSpHaDGHAL7H071th9QkbPc1_rDRti20eAOpb_bfOHQR8zleDC42NZ6t1p_FCnaxSX0-ZNXF4R7dBNsmGF_2Hfp6zbUWxXL99j6bLgvPKt4XgSpnSW3B1ZIIwYXTznFRgZSS-FpACSXzZRBaKMJcrSwFKoMjwkvqueR36On89xC7n2PuZ7bdMeb2yTDJlVZSMpVd9OzysUspQjCH2OxsHAwl5sTMnJiZEzNzYZYzj-dMAwB__opIJrjmvxm-ZiE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Liu, Peng</creator><creator>You, Zhiqiang</creator><creator>Wu, Jigang</creator><creator>Elimu, Michael</creator><creator>Wang, Weizheng</creator><creator>Cai, Shuo</creator><creator>Han, Yinhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4375-3187</orcidid><orcidid>https://orcid.org/0000-0002-2329-502X</orcidid><orcidid>https://orcid.org/0000-0002-6470-9794</orcidid><orcidid>https://orcid.org/0000-0001-9924-0685</orcidid><orcidid>https://orcid.org/0000-0003-0904-6681</orcidid></search><sort><creationdate>20210401</creationdate><title>Defect Analysis and Parallel Testing for 3D Hybrid CMOS-Memristor Memory</title><author>Liu, Peng ; You, Zhiqiang ; Wu, Jigang ; Elimu, Michael ; Wang, Weizheng ; Cai, Shuo ; Han, Yinhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f16ba0daebd504434b8bb349e5550cd4e7e72c7f484602bd6a1e15fb04c51c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Circuit faults</topic><topic>Circuits</topic><topic>CMOL</topic><topic>CMOS</topic><topic>Computer architecture</topic><topic>Computer memory</topic><topic>Defects</topic><topic>Discrete Fourier transforms</topic><topic>memristor</topic><topic>Memristors</topic><topic>Nanowires</topic><topic>Non-volatile memory</topic><topic>Power consumption</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>RRAM</topic><topic>Testability</topic><topic>Testing</topic><topic>Testing time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>You, Zhiqiang</creatorcontrib><creatorcontrib>Wu, Jigang</creatorcontrib><creatorcontrib>Elimu, Michael</creatorcontrib><creatorcontrib>Wang, Weizheng</creatorcontrib><creatorcontrib>Cai, Shuo</creatorcontrib><creatorcontrib>Han, Yinhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Peng</au><au>You, Zhiqiang</au><au>Wu, Jigang</au><au>Elimu, Michael</au><au>Wang, Weizheng</au><au>Cai, Shuo</au><au>Han, Yinhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Analysis and Parallel Testing for 3D Hybrid CMOS-Memristor Memory</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><spage>745</spage><epage>758</epage><pages>745-758</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract><![CDATA[CMOS Molecular (CMOL) architecture, which can alleviate the sneak path problem of one memristor (1R) crossbars and limit its power consumption, can be used in a large-scale memory system. In this article, we analyze the electrical defects in a CMOL circuit including open and bridge. A parallel March-like test algorithm is presented for the CMOL architecture, which covers the faults caused by the open and bridge defects and parametric variations during its fabrication. Analysis results show that the test time of the proposed test algorithm is reduced significantly compared with the enhanced methods of March-MOM and March C* for CMOL architectures. The write time is reduced approximately <inline-formula><tex-math notation="LaTeX">5n/4\times</tex-math> <mml:math><mml:mrow><mml:mn>5</mml:mn><mml:mi>n</mml:mi><mml:mo>/</mml:mo><mml:mn>4</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="liu-ieq1-2982830.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">n\times</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="liu-ieq2-2982830.gif"/> </inline-formula>, respectively, where <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq3-2982830.gif"/> </inline-formula> is the number of memristors attached to a nanowire segment. The read time is also reduced drastically. Finally, a design for testability (DFT) architecture is proposed to adapt the parallel March-like test algorithm. In compare with the short write time testing scheme, the proposed DFT can achieve 35.4 percent of reduction in area overhead, with 14.52 percent more power overhead kept the same delay in a CMOL circuit with 64 memory cells.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2020.2982830</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4375-3187</orcidid><orcidid>https://orcid.org/0000-0002-2329-502X</orcidid><orcidid>https://orcid.org/0000-0002-6470-9794</orcidid><orcidid>https://orcid.org/0000-0001-9924-0685</orcidid><orcidid>https://orcid.org/0000-0003-0904-6681</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6750
ispartof IEEE transactions on emerging topics in computing, 2021-04, Vol.9 (2), p.745-758
issn 2168-6750
2168-6750
language eng
recordid cdi_ieee_primary_9052438
source IEEE Electronic Library (IEL)
subjects Algorithms
Circuit faults
Circuits
CMOL
CMOS
Computer architecture
Computer memory
Defects
Discrete Fourier transforms
memristor
Memristors
Nanowires
Non-volatile memory
Power consumption
Random access memory
Resistance
RRAM
Testability
Testing
Testing time
title Defect Analysis and Parallel Testing for 3D Hybrid CMOS-Memristor Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Analysis%20and%20Parallel%20Testing%20for%203D%20Hybrid%20CMOS-Memristor%20Memory&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Liu,%20Peng&rft.date=2021-04-01&rft.volume=9&rft.issue=2&rft.spage=745&rft.epage=758&rft.pages=745-758&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2020.2982830&rft_dat=%3Cproquest_RIE%3E2536865526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536865526&rft_id=info:pmid/&rft_ieee_id=9052438&rfr_iscdi=true