Image Haze Removal Based on Superpixels and Markov Random Field
Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel si...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.60728-60736 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60736 |
---|---|
container_issue | |
container_start_page | 60728 |
container_title | IEEE access |
container_volume | 8 |
creator | Tan, Yibo Wang, Guoyu |
description | Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-image dehazing method based on superpixels and Markov random field. We obtain the transmission map in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly estimated transmittances can be corrected by properly characterizing the spatial dependencies between the incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results demonstrate that the proposed method outperforms state-of-the-art image dehazing methods. |
doi_str_mv | 10.1109/ACCESS.2020.2982910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9046040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9046040</ieee_id><doaj_id>oai_doaj_org_article_a09ce9411daa49a5ac491306854abaca</doaj_id><sourcerecordid>2453689465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-282caefae2c9de20daaa883dabe02b6f8eeb120e81ae52918ce321e1dbfdd0f83</originalsourceid><addsrcrecordid>eNpNkFFPAjEMxy9GE4nyCXhZ4jPY7Xbn9mSQgJJgTECfl97WI4cHwx0Q9dM7PULsS5um_3_bX5L0OAw4B307HI3Gi8VAgICB0EpoDmdJR_Bc99Mszc__1ZdJt2lWEEPFVnbXSe6na1wSe8JvYnNa-wPW7AEbcsxv2GK_pbCtPqluGG4ce8bw7g9sHmu_ZpOKanedXJRYN9Q95qvkbTJ-HT31Zy-P09Fw1rcS1K4vlLBIJZKw2pEAh4hKpQ4LAlHkpSIquABSHCmLHyhLqeDEXVE6B6VKr5Jp6-s8rsw2VGsMX8ZjZf4aPiwNhl1lazII2pKWnMclUmOGVmqeQq4yiQVajF43rdc2-I89NTuz8vuwiecbISMlpWWexam0nbLBN02g8rSVg_kFb1rw5he8OYKPql6rqojopNAgc5CQ_gDE-H6i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453689465</pqid></control><display><type>article</type><title>Image Haze Removal Based on Superpixels and Markov Random Field</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tan, Yibo ; Wang, Guoyu</creator><creatorcontrib>Tan, Yibo ; Wang, Guoyu</creatorcontrib><description>Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-image dehazing method based on superpixels and Markov random field. We obtain the transmission map in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly estimated transmittances can be corrected by properly characterizing the spatial dependencies between the incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results demonstrate that the proposed method outperforms state-of-the-art image dehazing methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2982910</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; dark channel prior ; Domains ; edge preservation ; Estimation ; Fields (mathematics) ; Haze ; haze removal ; Image color analysis ; Image edge detection ; Markov random field ; Markov random fields ; Object recognition ; Smoothing methods ; Spatial dependencies ; Superpixel</subject><ispartof>IEEE access, 2020, Vol.8, p.60728-60736</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-282caefae2c9de20daaa883dabe02b6f8eeb120e81ae52918ce321e1dbfdd0f83</citedby><cites>FETCH-LOGICAL-c408t-282caefae2c9de20daaa883dabe02b6f8eeb120e81ae52918ce321e1dbfdd0f83</cites><orcidid>0000-0002-6583-2962 ; 0000-0002-3346-1693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9046040$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Tan, Yibo</creatorcontrib><creatorcontrib>Wang, Guoyu</creatorcontrib><title>Image Haze Removal Based on Superpixels and Markov Random Field</title><title>IEEE access</title><addtitle>Access</addtitle><description>Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-image dehazing method based on superpixels and Markov random field. We obtain the transmission map in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly estimated transmittances can be corrected by properly characterizing the spatial dependencies between the incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results demonstrate that the proposed method outperforms state-of-the-art image dehazing methods.</description><subject>Algorithms</subject><subject>dark channel prior</subject><subject>Domains</subject><subject>edge preservation</subject><subject>Estimation</subject><subject>Fields (mathematics)</subject><subject>Haze</subject><subject>haze removal</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Markov random field</subject><subject>Markov random fields</subject><subject>Object recognition</subject><subject>Smoothing methods</subject><subject>Spatial dependencies</subject><subject>Superpixel</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFFPAjEMxy9GE4nyCXhZ4jPY7Xbn9mSQgJJgTECfl97WI4cHwx0Q9dM7PULsS5um_3_bX5L0OAw4B307HI3Gi8VAgICB0EpoDmdJR_Bc99Mszc__1ZdJt2lWEEPFVnbXSe6na1wSe8JvYnNa-wPW7AEbcsxv2GK_pbCtPqluGG4ce8bw7g9sHmu_ZpOKanedXJRYN9Q95qvkbTJ-HT31Zy-P09Fw1rcS1K4vlLBIJZKw2pEAh4hKpQ4LAlHkpSIquABSHCmLHyhLqeDEXVE6B6VKr5Jp6-s8rsw2VGsMX8ZjZf4aPiwNhl1lazII2pKWnMclUmOGVmqeQq4yiQVajF43rdc2-I89NTuz8vuwiecbISMlpWWexam0nbLBN02g8rSVg_kFb1rw5he8OYKPql6rqojopNAgc5CQ_gDE-H6i</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tan, Yibo</creator><creator>Wang, Guoyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6583-2962</orcidid><orcidid>https://orcid.org/0000-0002-3346-1693</orcidid></search><sort><creationdate>2020</creationdate><title>Image Haze Removal Based on Superpixels and Markov Random Field</title><author>Tan, Yibo ; Wang, Guoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-282caefae2c9de20daaa883dabe02b6f8eeb120e81ae52918ce321e1dbfdd0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>dark channel prior</topic><topic>Domains</topic><topic>edge preservation</topic><topic>Estimation</topic><topic>Fields (mathematics)</topic><topic>Haze</topic><topic>haze removal</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Markov random field</topic><topic>Markov random fields</topic><topic>Object recognition</topic><topic>Smoothing methods</topic><topic>Spatial dependencies</topic><topic>Superpixel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Yibo</creatorcontrib><creatorcontrib>Wang, Guoyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Yibo</au><au>Wang, Guoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Haze Removal Based on Superpixels and Markov Random Field</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>60728</spage><epage>60736</epage><pages>60728-60736</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-image dehazing method based on superpixels and Markov random field. We obtain the transmission map in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly estimated transmittances can be corrected by properly characterizing the spatial dependencies between the incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results demonstrate that the proposed method outperforms state-of-the-art image dehazing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2982910</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6583-2962</orcidid><orcidid>https://orcid.org/0000-0002-3346-1693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.60728-60736 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9046040 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms dark channel prior Domains edge preservation Estimation Fields (mathematics) Haze haze removal Image color analysis Image edge detection Markov random field Markov random fields Object recognition Smoothing methods Spatial dependencies Superpixel |
title | Image Haze Removal Based on Superpixels and Markov Random Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Haze%20Removal%20Based%20on%20Superpixels%20and%20Markov%20Random%20Field&rft.jtitle=IEEE%20access&rft.au=Tan,%20Yibo&rft.date=2020&rft.volume=8&rft.spage=60728&rft.epage=60736&rft.pages=60728-60736&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2982910&rft_dat=%3Cproquest_ieee_%3E2453689465%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453689465&rft_id=info:pmid/&rft_ieee_id=9046040&rft_doaj_id=oai_doaj_org_article_a09ce9411daa49a5ac491306854abaca&rfr_iscdi=true |