Image Haze Removal Based on Superpixels and Markov Random Field

Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.60728-60736
Hauptverfasser: Tan, Yibo, Wang, Guoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60736
container_issue
container_start_page 60728
container_title IEEE access
container_volume 8
creator Tan, Yibo
Wang, Guoyu
description Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-image dehazing method based on superpixels and Markov random field. We obtain the transmission map in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly estimated transmittances can be corrected by properly characterizing the spatial dependencies between the incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results demonstrate that the proposed method outperforms state-of-the-art image dehazing methods.
doi_str_mv 10.1109/ACCESS.2020.2982910
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9046040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9046040</ieee_id><doaj_id>oai_doaj_org_article_a09ce9411daa49a5ac491306854abaca</doaj_id><sourcerecordid>2453689465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-282caefae2c9de20daaa883dabe02b6f8eeb120e81ae52918ce321e1dbfdd0f83</originalsourceid><addsrcrecordid>eNpNkFFPAjEMxy9GE4nyCXhZ4jPY7Xbn9mSQgJJgTECfl97WI4cHwx0Q9dM7PULsS5um_3_bX5L0OAw4B307HI3Gi8VAgICB0EpoDmdJR_Bc99Mszc__1ZdJt2lWEEPFVnbXSe6na1wSe8JvYnNa-wPW7AEbcsxv2GK_pbCtPqluGG4ce8bw7g9sHmu_ZpOKanedXJRYN9Q95qvkbTJ-HT31Zy-P09Fw1rcS1K4vlLBIJZKw2pEAh4hKpQ4LAlHkpSIquABSHCmLHyhLqeDEXVE6B6VKr5Jp6-s8rsw2VGsMX8ZjZf4aPiwNhl1lazII2pKWnMclUmOGVmqeQq4yiQVajF43rdc2-I89NTuz8vuwiecbISMlpWWexam0nbLBN02g8rSVg_kFb1rw5he8OYKPql6rqojopNAgc5CQ_gDE-H6i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453689465</pqid></control><display><type>article</type><title>Image Haze Removal Based on Superpixels and Markov Random Field</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tan, Yibo ; Wang, Guoyu</creator><creatorcontrib>Tan, Yibo ; Wang, Guoyu</creatorcontrib><description>Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-image dehazing method based on superpixels and Markov random field. We obtain the transmission map in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly estimated transmittances can be corrected by properly characterizing the spatial dependencies between the incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results demonstrate that the proposed method outperforms state-of-the-art image dehazing methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2982910</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; dark channel prior ; Domains ; edge preservation ; Estimation ; Fields (mathematics) ; Haze ; haze removal ; Image color analysis ; Image edge detection ; Markov random field ; Markov random fields ; Object recognition ; Smoothing methods ; Spatial dependencies ; Superpixel</subject><ispartof>IEEE access, 2020, Vol.8, p.60728-60736</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-282caefae2c9de20daaa883dabe02b6f8eeb120e81ae52918ce321e1dbfdd0f83</citedby><cites>FETCH-LOGICAL-c408t-282caefae2c9de20daaa883dabe02b6f8eeb120e81ae52918ce321e1dbfdd0f83</cites><orcidid>0000-0002-6583-2962 ; 0000-0002-3346-1693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9046040$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Tan, Yibo</creatorcontrib><creatorcontrib>Wang, Guoyu</creatorcontrib><title>Image Haze Removal Based on Superpixels and Markov Random Field</title><title>IEEE access</title><addtitle>Access</addtitle><description>Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-image dehazing method based on superpixels and Markov random field. We obtain the transmission map in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly estimated transmittances can be corrected by properly characterizing the spatial dependencies between the incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results demonstrate that the proposed method outperforms state-of-the-art image dehazing methods.</description><subject>Algorithms</subject><subject>dark channel prior</subject><subject>Domains</subject><subject>edge preservation</subject><subject>Estimation</subject><subject>Fields (mathematics)</subject><subject>Haze</subject><subject>haze removal</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Markov random field</subject><subject>Markov random fields</subject><subject>Object recognition</subject><subject>Smoothing methods</subject><subject>Spatial dependencies</subject><subject>Superpixel</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFFPAjEMxy9GE4nyCXhZ4jPY7Xbn9mSQgJJgTECfl97WI4cHwx0Q9dM7PULsS5um_3_bX5L0OAw4B307HI3Gi8VAgICB0EpoDmdJR_Bc99Mszc__1ZdJt2lWEEPFVnbXSe6na1wSe8JvYnNa-wPW7AEbcsxv2GK_pbCtPqluGG4ce8bw7g9sHmu_ZpOKanedXJRYN9Q95qvkbTJ-HT31Zy-P09Fw1rcS1K4vlLBIJZKw2pEAh4hKpQ4LAlHkpSIquABSHCmLHyhLqeDEXVE6B6VKr5Jp6-s8rsw2VGsMX8ZjZf4aPiwNhl1lazII2pKWnMclUmOGVmqeQq4yiQVajF43rdc2-I89NTuz8vuwiecbISMlpWWexam0nbLBN02g8rSVg_kFb1rw5he8OYKPql6rqojopNAgc5CQ_gDE-H6i</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tan, Yibo</creator><creator>Wang, Guoyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6583-2962</orcidid><orcidid>https://orcid.org/0000-0002-3346-1693</orcidid></search><sort><creationdate>2020</creationdate><title>Image Haze Removal Based on Superpixels and Markov Random Field</title><author>Tan, Yibo ; Wang, Guoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-282caefae2c9de20daaa883dabe02b6f8eeb120e81ae52918ce321e1dbfdd0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>dark channel prior</topic><topic>Domains</topic><topic>edge preservation</topic><topic>Estimation</topic><topic>Fields (mathematics)</topic><topic>Haze</topic><topic>haze removal</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Markov random field</topic><topic>Markov random fields</topic><topic>Object recognition</topic><topic>Smoothing methods</topic><topic>Spatial dependencies</topic><topic>Superpixel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Yibo</creatorcontrib><creatorcontrib>Wang, Guoyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Yibo</au><au>Wang, Guoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Haze Removal Based on Superpixels and Markov Random Field</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>60728</spage><epage>60736</epage><pages>60728-60736</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-image dehazing method based on superpixels and Markov random field. We obtain the transmission map in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly estimated transmittances can be corrected by properly characterizing the spatial dependencies between the incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results demonstrate that the proposed method outperforms state-of-the-art image dehazing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2982910</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6583-2962</orcidid><orcidid>https://orcid.org/0000-0002-3346-1693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.60728-60736
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9046040
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
dark channel prior
Domains
edge preservation
Estimation
Fields (mathematics)
Haze
haze removal
Image color analysis
Image edge detection
Markov random field
Markov random fields
Object recognition
Smoothing methods
Spatial dependencies
Superpixel
title Image Haze Removal Based on Superpixels and Markov Random Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Haze%20Removal%20Based%20on%20Superpixels%20and%20Markov%20Random%20Field&rft.jtitle=IEEE%20access&rft.au=Tan,%20Yibo&rft.date=2020&rft.volume=8&rft.spage=60728&rft.epage=60736&rft.pages=60728-60736&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2982910&rft_dat=%3Cproquest_ieee_%3E2453689465%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453689465&rft_id=info:pmid/&rft_ieee_id=9046040&rft_doaj_id=oai_doaj_org_article_a09ce9411daa49a5ac491306854abaca&rfr_iscdi=true