A Deep Learning-Based Ultrasonic Pattern Recognition Method for Inspecting Girth Weld Cracking of Gas Pipeline
Electromagnetic Acoustic Transducer (EMAT) has become one of the fastest-growing solutions for pipeline weld inspection over the past decade due to its non-contact advantage. One primary problem of EMAT is that it has relatively lower energy transition efficiency compared to widely used piezoelectri...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2020-07, Vol.20 (14), p.7997-8006 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8006 |
---|---|
container_issue | 14 |
container_start_page | 7997 |
container_title | IEEE sensors journal |
container_volume | 20 |
creator | Yan, Y. Liu, D. Gao, B. Tian, G. Y. Cai, Z. C. |
description | Electromagnetic Acoustic Transducer (EMAT) has become one of the fastest-growing solutions for pipeline weld inspection over the past decade due to its non-contact advantage. One primary problem of EMAT is that it has relatively lower energy transition efficiency compared to widely used piezoelectric transducers, coupled with the effect of lift-off and the non-uniformity issue of welding material, the Signal-to-Noise Ratio (SNR) can be significantly restricted. This brings great difficulty in interpreting the EMAT signal measured from pipeline girth welds. To overcome this challenge, this paper presents a deep learning-based ultrasonic pattern recognition method to identify the pipeline girth weld cracking automatically. The proposed method utilizes a deep Convolution Neural Network (CNN) integrated with a pre-trained Support Vector Machine (SVM) classifier to extract the high-level features from the time-frequency representation of A-scan signals measured by bulk-wave EMAT and classify these signals into defective or non-defective groups. To validate the proposed method, a set of experiments is carried out to classify A-scan signals measured from the girth welds of an ex-service type 813-X70 gas pipeline. A comparative investigation is also undertaken to demonstrate the superiority of the proposed method against the conventional ultrasonic pattern recognition methods for evaluation. |
doi_str_mv | 10.1109/JSEN.2020.2982680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9044747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9044747</ieee_id><sourcerecordid>2416007546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-fac3a0f776b4467f70e01304b1d6f57ed33d2bdb3b8f76e4b4faded1479900ab3</originalsourceid><addsrcrecordid>eNo9kEFOwzAQRSMEEqVwAMTGEuuUcezEybIUKEUFKqCCXeTE49ZQ7GCbBbenURGr-Rq9PyO9JDmlMKIUqou75-uHUQYZjLKqzIoS9pIBzfMypYKX-31mkHIm3g6ToxDeAWglcjFI7JhcIXZkjtJbY1fppQyoyHITvQzOmpYsZIzoLXnC1q2sicZZco9x7RTRzpOZDR22cVslU-PjmrziRpGJl-1Hv3OaTGUgC9Phxlg8Tg603AQ8-ZvDZHlz_TK5TeeP09lkPE9bllcx1bJlErQQRcN5IbQABMqAN1QVOheoGFNZoxrWlFoUyBuupUJFuagqANmwYXK-u9t59_WNIdbv7tvb7cs647QAEDkvthTdUa13IXjUdefNp_Q_NYW611r3Wutea_2ndds523UMIv7zFXAuuGC_8zF0Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416007546</pqid></control><display><type>article</type><title>A Deep Learning-Based Ultrasonic Pattern Recognition Method for Inspecting Girth Weld Cracking of Gas Pipeline</title><source>IEEE Xplore</source><creator>Yan, Y. ; Liu, D. ; Gao, B. ; Tian, G. Y. ; Cai, Z. C.</creator><creatorcontrib>Yan, Y. ; Liu, D. ; Gao, B. ; Tian, G. Y. ; Cai, Z. C.</creatorcontrib><description>Electromagnetic Acoustic Transducer (EMAT) has become one of the fastest-growing solutions for pipeline weld inspection over the past decade due to its non-contact advantage. One primary problem of EMAT is that it has relatively lower energy transition efficiency compared to widely used piezoelectric transducers, coupled with the effect of lift-off and the non-uniformity issue of welding material, the Signal-to-Noise Ratio (SNR) can be significantly restricted. This brings great difficulty in interpreting the EMAT signal measured from pipeline girth welds. To overcome this challenge, this paper presents a deep learning-based ultrasonic pattern recognition method to identify the pipeline girth weld cracking automatically. The proposed method utilizes a deep Convolution Neural Network (CNN) integrated with a pre-trained Support Vector Machine (SVM) classifier to extract the high-level features from the time-frequency representation of A-scan signals measured by bulk-wave EMAT and classify these signals into defective or non-defective groups. To validate the proposed method, a set of experiments is carried out to classify A-scan signals measured from the girth welds of an ex-service type 813-X70 gas pipeline. A comparative investigation is also undertaken to demonstrate the superiority of the proposed method against the conventional ultrasonic pattern recognition methods for evaluation.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.2982680</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic noise ; Acoustics ; Artificial neural networks ; Convolution ; Deep learning ; electromagnetic acoustic transducer ; Feature extraction ; Gas pipelines ; Inspection ; Machine learning ; Natural gas ; Non-destructive testing ; Nonuniformity ; Pattern recognition ; Piezoelectric transducers ; Piezoelectricity ; pipeline inspection ; Pipelines ; Signal classification ; Signal to noise ratio ; Support vector machines ; ultrasonic pattern recognition ; Ultrasonic testing ; Welded joints ; Welding</subject><ispartof>IEEE sensors journal, 2020-07, Vol.20 (14), p.7997-8006</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-fac3a0f776b4467f70e01304b1d6f57ed33d2bdb3b8f76e4b4faded1479900ab3</citedby><cites>FETCH-LOGICAL-c359t-fac3a0f776b4467f70e01304b1d6f57ed33d2bdb3b8f76e4b4faded1479900ab3</cites><orcidid>0000-0003-3377-6895 ; 0000-0002-7563-1523 ; 0000-0001-9632-0698 ; 0000-0001-8646-7928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9044747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9044747$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Y.</creatorcontrib><creatorcontrib>Liu, D.</creatorcontrib><creatorcontrib>Gao, B.</creatorcontrib><creatorcontrib>Tian, G. Y.</creatorcontrib><creatorcontrib>Cai, Z. C.</creatorcontrib><title>A Deep Learning-Based Ultrasonic Pattern Recognition Method for Inspecting Girth Weld Cracking of Gas Pipeline</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Electromagnetic Acoustic Transducer (EMAT) has become one of the fastest-growing solutions for pipeline weld inspection over the past decade due to its non-contact advantage. One primary problem of EMAT is that it has relatively lower energy transition efficiency compared to widely used piezoelectric transducers, coupled with the effect of lift-off and the non-uniformity issue of welding material, the Signal-to-Noise Ratio (SNR) can be significantly restricted. This brings great difficulty in interpreting the EMAT signal measured from pipeline girth welds. To overcome this challenge, this paper presents a deep learning-based ultrasonic pattern recognition method to identify the pipeline girth weld cracking automatically. The proposed method utilizes a deep Convolution Neural Network (CNN) integrated with a pre-trained Support Vector Machine (SVM) classifier to extract the high-level features from the time-frequency representation of A-scan signals measured by bulk-wave EMAT and classify these signals into defective or non-defective groups. To validate the proposed method, a set of experiments is carried out to classify A-scan signals measured from the girth welds of an ex-service type 813-X70 gas pipeline. A comparative investigation is also undertaken to demonstrate the superiority of the proposed method against the conventional ultrasonic pattern recognition methods for evaluation.</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>electromagnetic acoustic transducer</subject><subject>Feature extraction</subject><subject>Gas pipelines</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Natural gas</subject><subject>Non-destructive testing</subject><subject>Nonuniformity</subject><subject>Pattern recognition</subject><subject>Piezoelectric transducers</subject><subject>Piezoelectricity</subject><subject>pipeline inspection</subject><subject>Pipelines</subject><subject>Signal classification</subject><subject>Signal to noise ratio</subject><subject>Support vector machines</subject><subject>ultrasonic pattern recognition</subject><subject>Ultrasonic testing</subject><subject>Welded joints</subject><subject>Welding</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFOwzAQRSMEEqVwAMTGEuuUcezEybIUKEUFKqCCXeTE49ZQ7GCbBbenURGr-Rq9PyO9JDmlMKIUqou75-uHUQYZjLKqzIoS9pIBzfMypYKX-31mkHIm3g6ToxDeAWglcjFI7JhcIXZkjtJbY1fppQyoyHITvQzOmpYsZIzoLXnC1q2sicZZco9x7RTRzpOZDR22cVslU-PjmrziRpGJl-1Hv3OaTGUgC9Phxlg8Tg603AQ8-ZvDZHlz_TK5TeeP09lkPE9bllcx1bJlErQQRcN5IbQABMqAN1QVOheoGFNZoxrWlFoUyBuupUJFuagqANmwYXK-u9t59_WNIdbv7tvb7cs647QAEDkvthTdUa13IXjUdefNp_Q_NYW611r3Wutea_2ndds523UMIv7zFXAuuGC_8zF0Xg</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Yan, Y.</creator><creator>Liu, D.</creator><creator>Gao, B.</creator><creator>Tian, G. Y.</creator><creator>Cai, Z. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3377-6895</orcidid><orcidid>https://orcid.org/0000-0002-7563-1523</orcidid><orcidid>https://orcid.org/0000-0001-9632-0698</orcidid><orcidid>https://orcid.org/0000-0001-8646-7928</orcidid></search><sort><creationdate>20200715</creationdate><title>A Deep Learning-Based Ultrasonic Pattern Recognition Method for Inspecting Girth Weld Cracking of Gas Pipeline</title><author>Yan, Y. ; Liu, D. ; Gao, B. ; Tian, G. Y. ; Cai, Z. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-fac3a0f776b4467f70e01304b1d6f57ed33d2bdb3b8f76e4b4faded1479900ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>electromagnetic acoustic transducer</topic><topic>Feature extraction</topic><topic>Gas pipelines</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Natural gas</topic><topic>Non-destructive testing</topic><topic>Nonuniformity</topic><topic>Pattern recognition</topic><topic>Piezoelectric transducers</topic><topic>Piezoelectricity</topic><topic>pipeline inspection</topic><topic>Pipelines</topic><topic>Signal classification</topic><topic>Signal to noise ratio</topic><topic>Support vector machines</topic><topic>ultrasonic pattern recognition</topic><topic>Ultrasonic testing</topic><topic>Welded joints</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Y.</creatorcontrib><creatorcontrib>Liu, D.</creatorcontrib><creatorcontrib>Gao, B.</creatorcontrib><creatorcontrib>Tian, G. Y.</creatorcontrib><creatorcontrib>Cai, Z. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Y.</au><au>Liu, D.</au><au>Gao, B.</au><au>Tian, G. Y.</au><au>Cai, Z. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Based Ultrasonic Pattern Recognition Method for Inspecting Girth Weld Cracking of Gas Pipeline</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-07-15</date><risdate>2020</risdate><volume>20</volume><issue>14</issue><spage>7997</spage><epage>8006</epage><pages>7997-8006</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Electromagnetic Acoustic Transducer (EMAT) has become one of the fastest-growing solutions for pipeline weld inspection over the past decade due to its non-contact advantage. One primary problem of EMAT is that it has relatively lower energy transition efficiency compared to widely used piezoelectric transducers, coupled with the effect of lift-off and the non-uniformity issue of welding material, the Signal-to-Noise Ratio (SNR) can be significantly restricted. This brings great difficulty in interpreting the EMAT signal measured from pipeline girth welds. To overcome this challenge, this paper presents a deep learning-based ultrasonic pattern recognition method to identify the pipeline girth weld cracking automatically. The proposed method utilizes a deep Convolution Neural Network (CNN) integrated with a pre-trained Support Vector Machine (SVM) classifier to extract the high-level features from the time-frequency representation of A-scan signals measured by bulk-wave EMAT and classify these signals into defective or non-defective groups. To validate the proposed method, a set of experiments is carried out to classify A-scan signals measured from the girth welds of an ex-service type 813-X70 gas pipeline. A comparative investigation is also undertaken to demonstrate the superiority of the proposed method against the conventional ultrasonic pattern recognition methods for evaluation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.2982680</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3377-6895</orcidid><orcidid>https://orcid.org/0000-0002-7563-1523</orcidid><orcidid>https://orcid.org/0000-0001-9632-0698</orcidid><orcidid>https://orcid.org/0000-0001-8646-7928</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2020-07, Vol.20 (14), p.7997-8006 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9044747 |
source | IEEE Xplore |
subjects | Acoustic noise Acoustics Artificial neural networks Convolution Deep learning electromagnetic acoustic transducer Feature extraction Gas pipelines Inspection Machine learning Natural gas Non-destructive testing Nonuniformity Pattern recognition Piezoelectric transducers Piezoelectricity pipeline inspection Pipelines Signal classification Signal to noise ratio Support vector machines ultrasonic pattern recognition Ultrasonic testing Welded joints Welding |
title | A Deep Learning-Based Ultrasonic Pattern Recognition Method for Inspecting Girth Weld Cracking of Gas Pipeline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Based%20Ultrasonic%20Pattern%20Recognition%20Method%20for%20Inspecting%20Girth%20Weld%20Cracking%20of%20Gas%20Pipeline&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yan,%20Y.&rft.date=2020-07-15&rft.volume=20&rft.issue=14&rft.spage=7997&rft.epage=8006&rft.pages=7997-8006&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.2982680&rft_dat=%3Cproquest_RIE%3E2416007546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416007546&rft_id=info:pmid/&rft_ieee_id=9044747&rfr_iscdi=true |