Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments
In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level mane...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent transportation systems magazine 2022-01, Vol.14 (1), p.57-73 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | IEEE intelligent transportation systems magazine |
container_volume | 14 |
creator | Qian, Lilin Xu, Xin Zeng, Yujun Li, Xiaohui Sun, Zhenping Song, Hang |
description | In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level maneuver decisions with the lower level trajectory planning. To solve this problem, this paper presents a synchronous maneuver searching and trajectory planning (SMSTP) algorithm based on the topological concept of homotopy. Firstly, a set of alternative maneuvers with boundary limits are enumerated on a multi-lane road. Instead of sampling numerous paths in the whole spatio-temporal space, we, for the first time, propose using Trajectory Profiles (TPs) to quickly construct the topological maneuvers represented by different routes, and put forward a corridor generation algorithm based on graph-search. The bounded corridor further constrains the maneuver's space in the spatial space. A step-wise heuristic optimization algorithm is then proposed to synchronously generate a feasible trajectory for each maneuver. To achieve real-time performance, we initialize the states to be optimized with the boundary constraints of maneuvers, and we set some heuristic states as terminal targets in the quadratic cost function. The solution of a feasible trajectory is always guaranteed only if a specific maneuver is given. The simulation and realistic driving-test experiments verified that the proposed SMSTP algorithm has a short computation time which is less than 37 ms, and the experimental results showed the validity and effectiveness of the SMSTP algorithm. |
doi_str_mv | 10.1109/MITS.2019.2953551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9044619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9044619</ieee_id><sourcerecordid>2619017737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-84aedd8cd5c56d78936614321a66ce30017c4642a12f303d5297a9da231514e53</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOHQfQHwJ-NyZm39tHsecOthQ2PQ1hDR1HVs6k3bQb2_KhvflXC7ndw8chB6ATACIel4tNusJJaAmVAkmBFyhESgOGYDKr4edqQyYIrdoHOOOpGG0kFSNkF_33m5D45su4pXxrju5gNfOBLut_Q82vsSbYHbOtk3o8efeeD_cqybgadcm7jCQ325b272LuPb4pffmUNsBq6qkc3-qU8DB-Tbeo5vK7KMbX_QOfb3ON7P3bPnxtphNl5mlirVZwY0ry8KWwgpZ5oViUgJnFIyU1jFCILdccmqAVoywUlCVG1UaykAAd4Ldoafz32NofjsXW71ruuBTpKYSVOJzlicXnF02NDEGV-ljqA8m9BqIHprVQ7N6aFZfmk3M45mpnXP_fkU4T3_ZH_HzdSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619017737</pqid></control><display><type>article</type><title>Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Qian, Lilin ; Xu, Xin ; Zeng, Yujun ; Li, Xiaohui ; Sun, Zhenping ; Song, Hang</creator><creatorcontrib>Qian, Lilin ; Xu, Xin ; Zeng, Yujun ; Li, Xiaohui ; Sun, Zhenping ; Song, Hang</creatorcontrib><description>In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level maneuver decisions with the lower level trajectory planning. To solve this problem, this paper presents a synchronous maneuver searching and trajectory planning (SMSTP) algorithm based on the topological concept of homotopy. Firstly, a set of alternative maneuvers with boundary limits are enumerated on a multi-lane road. Instead of sampling numerous paths in the whole spatio-temporal space, we, for the first time, propose using Trajectory Profiles (TPs) to quickly construct the topological maneuvers represented by different routes, and put forward a corridor generation algorithm based on graph-search. The bounded corridor further constrains the maneuver's space in the spatial space. A step-wise heuristic optimization algorithm is then proposed to synchronously generate a feasible trajectory for each maneuver. To achieve real-time performance, we initialize the states to be optimized with the boundary constraints of maneuvers, and we set some heuristic states as terminal targets in the quadratic cost function. The solution of a feasible trajectory is always guaranteed only if a specific maneuver is given. The simulation and realistic driving-test experiments verified that the proposed SMSTP algorithm has a short computation time which is less than 37 ms, and the experimental results showed the validity and effectiveness of the SMSTP algorithm.</description><identifier>ISSN: 1939-1390</identifier><identifier>EISSN: 1941-1197</identifier><identifier>DOI: 10.1109/MITS.2019.2953551</identifier><identifier>CODEN: IITSBO</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous vehicles ; Cost function ; Decision making ; Driving ; Heuristic ; Heuristic algorithms ; Incompatibility ; Maneuvers ; Optimization ; Real time ; Real-time systems ; Searching ; Space vehicles ; Task complexity ; Topology ; Traffic control ; Traffic planning ; Trajectory planning</subject><ispartof>IEEE intelligent transportation systems magazine, 2022-01, Vol.14 (1), p.57-73</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-84aedd8cd5c56d78936614321a66ce30017c4642a12f303d5297a9da231514e53</citedby><cites>FETCH-LOGICAL-c293t-84aedd8cd5c56d78936614321a66ce30017c4642a12f303d5297a9da231514e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9044619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9044619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qian, Lilin</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Zeng, Yujun</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Sun, Zhenping</creatorcontrib><creatorcontrib>Song, Hang</creatorcontrib><title>Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments</title><title>IEEE intelligent transportation systems magazine</title><addtitle>MITS</addtitle><description>In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level maneuver decisions with the lower level trajectory planning. To solve this problem, this paper presents a synchronous maneuver searching and trajectory planning (SMSTP) algorithm based on the topological concept of homotopy. Firstly, a set of alternative maneuvers with boundary limits are enumerated on a multi-lane road. Instead of sampling numerous paths in the whole spatio-temporal space, we, for the first time, propose using Trajectory Profiles (TPs) to quickly construct the topological maneuvers represented by different routes, and put forward a corridor generation algorithm based on graph-search. The bounded corridor further constrains the maneuver's space in the spatial space. A step-wise heuristic optimization algorithm is then proposed to synchronously generate a feasible trajectory for each maneuver. To achieve real-time performance, we initialize the states to be optimized with the boundary constraints of maneuvers, and we set some heuristic states as terminal targets in the quadratic cost function. The solution of a feasible trajectory is always guaranteed only if a specific maneuver is given. The simulation and realistic driving-test experiments verified that the proposed SMSTP algorithm has a short computation time which is less than 37 ms, and the experimental results showed the validity and effectiveness of the SMSTP algorithm.</description><subject>Algorithms</subject><subject>Autonomous vehicles</subject><subject>Cost function</subject><subject>Decision making</subject><subject>Driving</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Incompatibility</subject><subject>Maneuvers</subject><subject>Optimization</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Searching</subject><subject>Space vehicles</subject><subject>Task complexity</subject><subject>Topology</subject><subject>Traffic control</subject><subject>Traffic planning</subject><subject>Trajectory planning</subject><issn>1939-1390</issn><issn>1941-1197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOHQfQHwJ-NyZm39tHsecOthQ2PQ1hDR1HVs6k3bQb2_KhvflXC7ndw8chB6ATACIel4tNusJJaAmVAkmBFyhESgOGYDKr4edqQyYIrdoHOOOpGG0kFSNkF_33m5D45su4pXxrju5gNfOBLut_Q82vsSbYHbOtk3o8efeeD_cqybgadcm7jCQ325b272LuPb4pffmUNsBq6qkc3-qU8DB-Tbeo5vK7KMbX_QOfb3ON7P3bPnxtphNl5mlirVZwY0ry8KWwgpZ5oViUgJnFIyU1jFCILdccmqAVoywUlCVG1UaykAAd4Ldoafz32NofjsXW71ruuBTpKYSVOJzlicXnF02NDEGV-ljqA8m9BqIHprVQ7N6aFZfmk3M45mpnXP_fkU4T3_ZH_HzdSE</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Qian, Lilin</creator><creator>Xu, Xin</creator><creator>Zeng, Yujun</creator><creator>Li, Xiaohui</creator><creator>Sun, Zhenping</creator><creator>Song, Hang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>202201</creationdate><title>Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments</title><author>Qian, Lilin ; Xu, Xin ; Zeng, Yujun ; Li, Xiaohui ; Sun, Zhenping ; Song, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-84aedd8cd5c56d78936614321a66ce30017c4642a12f303d5297a9da231514e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous vehicles</topic><topic>Cost function</topic><topic>Decision making</topic><topic>Driving</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Incompatibility</topic><topic>Maneuvers</topic><topic>Optimization</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Searching</topic><topic>Space vehicles</topic><topic>Task complexity</topic><topic>Topology</topic><topic>Traffic control</topic><topic>Traffic planning</topic><topic>Trajectory planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Qian, Lilin</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Zeng, Yujun</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Sun, Zhenping</creatorcontrib><creatorcontrib>Song, Hang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent transportation systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qian, Lilin</au><au>Xu, Xin</au><au>Zeng, Yujun</au><au>Li, Xiaohui</au><au>Sun, Zhenping</au><au>Song, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments</atitle><jtitle>IEEE intelligent transportation systems magazine</jtitle><stitle>MITS</stitle><date>2022-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>57</spage><epage>73</epage><pages>57-73</pages><issn>1939-1390</issn><eissn>1941-1197</eissn><coden>IITSBO</coden><abstract>In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level maneuver decisions with the lower level trajectory planning. To solve this problem, this paper presents a synchronous maneuver searching and trajectory planning (SMSTP) algorithm based on the topological concept of homotopy. Firstly, a set of alternative maneuvers with boundary limits are enumerated on a multi-lane road. Instead of sampling numerous paths in the whole spatio-temporal space, we, for the first time, propose using Trajectory Profiles (TPs) to quickly construct the topological maneuvers represented by different routes, and put forward a corridor generation algorithm based on graph-search. The bounded corridor further constrains the maneuver's space in the spatial space. A step-wise heuristic optimization algorithm is then proposed to synchronously generate a feasible trajectory for each maneuver. To achieve real-time performance, we initialize the states to be optimized with the boundary constraints of maneuvers, and we set some heuristic states as terminal targets in the quadratic cost function. The solution of a feasible trajectory is always guaranteed only if a specific maneuver is given. The simulation and realistic driving-test experiments verified that the proposed SMSTP algorithm has a short computation time which is less than 37 ms, and the experimental results showed the validity and effectiveness of the SMSTP algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MITS.2019.2953551</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1390 |
ispartof | IEEE intelligent transportation systems magazine, 2022-01, Vol.14 (1), p.57-73 |
issn | 1939-1390 1941-1197 |
language | eng |
recordid | cdi_ieee_primary_9044619 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autonomous vehicles Cost function Decision making Driving Heuristic Heuristic algorithms Incompatibility Maneuvers Optimization Real time Real-time systems Searching Space vehicles Task complexity Topology Traffic control Traffic planning Trajectory planning |
title | Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronous%20Maneuver%20Searching%20and%20Trajectory%20Planning%20for%20Autonomous%20Vehicles%20in%20Dynamic%20Traffic%20Environments&rft.jtitle=IEEE%20intelligent%20transportation%20systems%20magazine&rft.au=Qian,%20Lilin&rft.date=2022-01&rft.volume=14&rft.issue=1&rft.spage=57&rft.epage=73&rft.pages=57-73&rft.issn=1939-1390&rft.eissn=1941-1197&rft.coden=IITSBO&rft_id=info:doi/10.1109/MITS.2019.2953551&rft_dat=%3Cproquest_RIE%3E2619017737%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619017737&rft_id=info:pmid/&rft_ieee_id=9044619&rfr_iscdi=true |