Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments

In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level mane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent transportation systems magazine 2022-01, Vol.14 (1), p.57-73
Hauptverfasser: Qian, Lilin, Xu, Xin, Zeng, Yujun, Li, Xiaohui, Sun, Zhenping, Song, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 57
container_title IEEE intelligent transportation systems magazine
container_volume 14
creator Qian, Lilin
Xu, Xin
Zeng, Yujun
Li, Xiaohui
Sun, Zhenping
Song, Hang
description In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level maneuver decisions with the lower level trajectory planning. To solve this problem, this paper presents a synchronous maneuver searching and trajectory planning (SMSTP) algorithm based on the topological concept of homotopy. Firstly, a set of alternative maneuvers with boundary limits are enumerated on a multi-lane road. Instead of sampling numerous paths in the whole spatio-temporal space, we, for the first time, propose using Trajectory Profiles (TPs) to quickly construct the topological maneuvers represented by different routes, and put forward a corridor generation algorithm based on graph-search. The bounded corridor further constrains the maneuver's space in the spatial space. A step-wise heuristic optimization algorithm is then proposed to synchronously generate a feasible trajectory for each maneuver. To achieve real-time performance, we initialize the states to be optimized with the boundary constraints of maneuvers, and we set some heuristic states as terminal targets in the quadratic cost function. The solution of a feasible trajectory is always guaranteed only if a specific maneuver is given. The simulation and realistic driving-test experiments verified that the proposed SMSTP algorithm has a short computation time which is less than 37 ms, and the experimental results showed the validity and effectiveness of the SMSTP algorithm.
doi_str_mv 10.1109/MITS.2019.2953551
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9044619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9044619</ieee_id><sourcerecordid>2619017737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-84aedd8cd5c56d78936614321a66ce30017c4642a12f303d5297a9da231514e53</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOHQfQHwJ-NyZm39tHsecOthQ2PQ1hDR1HVs6k3bQb2_KhvflXC7ndw8chB6ATACIel4tNusJJaAmVAkmBFyhESgOGYDKr4edqQyYIrdoHOOOpGG0kFSNkF_33m5D45su4pXxrju5gNfOBLut_Q82vsSbYHbOtk3o8efeeD_cqybgadcm7jCQ325b272LuPb4pffmUNsBq6qkc3-qU8DB-Tbeo5vK7KMbX_QOfb3ON7P3bPnxtphNl5mlirVZwY0ry8KWwgpZ5oViUgJnFIyU1jFCILdccmqAVoywUlCVG1UaykAAd4Ldoafz32NofjsXW71ruuBTpKYSVOJzlicXnF02NDEGV-ljqA8m9BqIHprVQ7N6aFZfmk3M45mpnXP_fkU4T3_ZH_HzdSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619017737</pqid></control><display><type>article</type><title>Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Qian, Lilin ; Xu, Xin ; Zeng, Yujun ; Li, Xiaohui ; Sun, Zhenping ; Song, Hang</creator><creatorcontrib>Qian, Lilin ; Xu, Xin ; Zeng, Yujun ; Li, Xiaohui ; Sun, Zhenping ; Song, Hang</creatorcontrib><description>In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level maneuver decisions with the lower level trajectory planning. To solve this problem, this paper presents a synchronous maneuver searching and trajectory planning (SMSTP) algorithm based on the topological concept of homotopy. Firstly, a set of alternative maneuvers with boundary limits are enumerated on a multi-lane road. Instead of sampling numerous paths in the whole spatio-temporal space, we, for the first time, propose using Trajectory Profiles (TPs) to quickly construct the topological maneuvers represented by different routes, and put forward a corridor generation algorithm based on graph-search. The bounded corridor further constrains the maneuver's space in the spatial space. A step-wise heuristic optimization algorithm is then proposed to synchronously generate a feasible trajectory for each maneuver. To achieve real-time performance, we initialize the states to be optimized with the boundary constraints of maneuvers, and we set some heuristic states as terminal targets in the quadratic cost function. The solution of a feasible trajectory is always guaranteed only if a specific maneuver is given. The simulation and realistic driving-test experiments verified that the proposed SMSTP algorithm has a short computation time which is less than 37 ms, and the experimental results showed the validity and effectiveness of the SMSTP algorithm.</description><identifier>ISSN: 1939-1390</identifier><identifier>EISSN: 1941-1197</identifier><identifier>DOI: 10.1109/MITS.2019.2953551</identifier><identifier>CODEN: IITSBO</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous vehicles ; Cost function ; Decision making ; Driving ; Heuristic ; Heuristic algorithms ; Incompatibility ; Maneuvers ; Optimization ; Real time ; Real-time systems ; Searching ; Space vehicles ; Task complexity ; Topology ; Traffic control ; Traffic planning ; Trajectory planning</subject><ispartof>IEEE intelligent transportation systems magazine, 2022-01, Vol.14 (1), p.57-73</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-84aedd8cd5c56d78936614321a66ce30017c4642a12f303d5297a9da231514e53</citedby><cites>FETCH-LOGICAL-c293t-84aedd8cd5c56d78936614321a66ce30017c4642a12f303d5297a9da231514e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9044619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9044619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qian, Lilin</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Zeng, Yujun</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Sun, Zhenping</creatorcontrib><creatorcontrib>Song, Hang</creatorcontrib><title>Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments</title><title>IEEE intelligent transportation systems magazine</title><addtitle>MITS</addtitle><description>In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level maneuver decisions with the lower level trajectory planning. To solve this problem, this paper presents a synchronous maneuver searching and trajectory planning (SMSTP) algorithm based on the topological concept of homotopy. Firstly, a set of alternative maneuvers with boundary limits are enumerated on a multi-lane road. Instead of sampling numerous paths in the whole spatio-temporal space, we, for the first time, propose using Trajectory Profiles (TPs) to quickly construct the topological maneuvers represented by different routes, and put forward a corridor generation algorithm based on graph-search. The bounded corridor further constrains the maneuver's space in the spatial space. A step-wise heuristic optimization algorithm is then proposed to synchronously generate a feasible trajectory for each maneuver. To achieve real-time performance, we initialize the states to be optimized with the boundary constraints of maneuvers, and we set some heuristic states as terminal targets in the quadratic cost function. The solution of a feasible trajectory is always guaranteed only if a specific maneuver is given. The simulation and realistic driving-test experiments verified that the proposed SMSTP algorithm has a short computation time which is less than 37 ms, and the experimental results showed the validity and effectiveness of the SMSTP algorithm.</description><subject>Algorithms</subject><subject>Autonomous vehicles</subject><subject>Cost function</subject><subject>Decision making</subject><subject>Driving</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Incompatibility</subject><subject>Maneuvers</subject><subject>Optimization</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Searching</subject><subject>Space vehicles</subject><subject>Task complexity</subject><subject>Topology</subject><subject>Traffic control</subject><subject>Traffic planning</subject><subject>Trajectory planning</subject><issn>1939-1390</issn><issn>1941-1197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOHQfQHwJ-NyZm39tHsecOthQ2PQ1hDR1HVs6k3bQb2_KhvflXC7ndw8chB6ATACIel4tNusJJaAmVAkmBFyhESgOGYDKr4edqQyYIrdoHOOOpGG0kFSNkF_33m5D45su4pXxrju5gNfOBLut_Q82vsSbYHbOtk3o8efeeD_cqybgadcm7jCQ325b272LuPb4pffmUNsBq6qkc3-qU8DB-Tbeo5vK7KMbX_QOfb3ON7P3bPnxtphNl5mlirVZwY0ry8KWwgpZ5oViUgJnFIyU1jFCILdccmqAVoywUlCVG1UaykAAd4Ldoafz32NofjsXW71ruuBTpKYSVOJzlicXnF02NDEGV-ljqA8m9BqIHprVQ7N6aFZfmk3M45mpnXP_fkU4T3_ZH_HzdSE</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Qian, Lilin</creator><creator>Xu, Xin</creator><creator>Zeng, Yujun</creator><creator>Li, Xiaohui</creator><creator>Sun, Zhenping</creator><creator>Song, Hang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>202201</creationdate><title>Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments</title><author>Qian, Lilin ; Xu, Xin ; Zeng, Yujun ; Li, Xiaohui ; Sun, Zhenping ; Song, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-84aedd8cd5c56d78936614321a66ce30017c4642a12f303d5297a9da231514e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous vehicles</topic><topic>Cost function</topic><topic>Decision making</topic><topic>Driving</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Incompatibility</topic><topic>Maneuvers</topic><topic>Optimization</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Searching</topic><topic>Space vehicles</topic><topic>Task complexity</topic><topic>Topology</topic><topic>Traffic control</topic><topic>Traffic planning</topic><topic>Trajectory planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Qian, Lilin</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Zeng, Yujun</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Sun, Zhenping</creatorcontrib><creatorcontrib>Song, Hang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent transportation systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qian, Lilin</au><au>Xu, Xin</au><au>Zeng, Yujun</au><au>Li, Xiaohui</au><au>Sun, Zhenping</au><au>Song, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments</atitle><jtitle>IEEE intelligent transportation systems magazine</jtitle><stitle>MITS</stitle><date>2022-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>57</spage><epage>73</epage><pages>57-73</pages><issn>1939-1390</issn><eissn>1941-1197</eissn><coden>IITSBO</coden><abstract>In the real-time decision-making and local planning process of autonomous vehicles in dynamic environments, the autonomous driving system may fail to find a reasonable policy or even gets trapped in some situation due to the complexity of global tasks and the incompatibility between upper level maneuver decisions with the lower level trajectory planning. To solve this problem, this paper presents a synchronous maneuver searching and trajectory planning (SMSTP) algorithm based on the topological concept of homotopy. Firstly, a set of alternative maneuvers with boundary limits are enumerated on a multi-lane road. Instead of sampling numerous paths in the whole spatio-temporal space, we, for the first time, propose using Trajectory Profiles (TPs) to quickly construct the topological maneuvers represented by different routes, and put forward a corridor generation algorithm based on graph-search. The bounded corridor further constrains the maneuver's space in the spatial space. A step-wise heuristic optimization algorithm is then proposed to synchronously generate a feasible trajectory for each maneuver. To achieve real-time performance, we initialize the states to be optimized with the boundary constraints of maneuvers, and we set some heuristic states as terminal targets in the quadratic cost function. The solution of a feasible trajectory is always guaranteed only if a specific maneuver is given. The simulation and realistic driving-test experiments verified that the proposed SMSTP algorithm has a short computation time which is less than 37 ms, and the experimental results showed the validity and effectiveness of the SMSTP algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MITS.2019.2953551</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1390
ispartof IEEE intelligent transportation systems magazine, 2022-01, Vol.14 (1), p.57-73
issn 1939-1390
1941-1197
language eng
recordid cdi_ieee_primary_9044619
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous vehicles
Cost function
Decision making
Driving
Heuristic
Heuristic algorithms
Incompatibility
Maneuvers
Optimization
Real time
Real-time systems
Searching
Space vehicles
Task complexity
Topology
Traffic control
Traffic planning
Trajectory planning
title Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles in Dynamic Traffic Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronous%20Maneuver%20Searching%20and%20Trajectory%20Planning%20for%20Autonomous%20Vehicles%20in%20Dynamic%20Traffic%20Environments&rft.jtitle=IEEE%20intelligent%20transportation%20systems%20magazine&rft.au=Qian,%20Lilin&rft.date=2022-01&rft.volume=14&rft.issue=1&rft.spage=57&rft.epage=73&rft.pages=57-73&rft.issn=1939-1390&rft.eissn=1941-1197&rft.coden=IITSBO&rft_id=info:doi/10.1109/MITS.2019.2953551&rft_dat=%3Cproquest_RIE%3E2619017737%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619017737&rft_id=info:pmid/&rft_ieee_id=9044619&rfr_iscdi=true