Small Target Tracking in Satellite Videos Using Background Compensation
Through the use of video technology, satellites can detect dynamic targets and analyze their motion characteristics. Target tracking can extract dynamic information about key ground targets for target monitoring and trajectory prediction by satellite video. Tracking algorithms are affected by target...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2020-10, Vol.58 (10), p.7010-7021 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7021 |
---|---|
container_issue | 10 |
container_start_page | 7010 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 58 |
creator | Wang, Yunming Wang, Taoyang Zhang, Guo Cheng, Qian Wu, Jia-qi |
description | Through the use of video technology, satellites can detect dynamic targets and analyze their motion characteristics. Target tracking can extract dynamic information about key ground targets for target monitoring and trajectory prediction by satellite video. Tracking algorithms are affected by target motion characteristics, such as velocity and direction, as well as background characteristics, such as illumination changes, occlusion, and background similarities with the target. However, these problems are seldom studied with satellite video cameras. Current algorithms are unsuitable for satellite video because of the poor texture and color features of the target in satellite video. Therefore, in this article, we enhance target tracking for satellite video technology using two aspects: 1) sample training strategy and 2) sample characterization. We establish a filter training mechanism for the target and background to improve the discrimination ability of the tracking algorithm. We then build a target feature model using a Gabor filter to enhance the contrast between the target and background. Moreover, we propose a tracking state evaluation index to avoid tracking drift. Tracking experiments using nine sets of Jilin-1 satellite videos show that the proposed approach can accurately locate a target under weak feature attributes. Therefore, this article contributes to more robust tracking using satellite video technology. |
doi_str_mv | 10.1109/TGRS.2020.2978512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9044613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9044613</ieee_id><sourcerecordid>2447336957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1fd802a9f56868e7d0397c44f27579bbddba8681ab8901b35913f90d32b9a21f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgJuE6dNx-ZeUstWoWCYFO3wyQzKalpUmfShf--CS2u3uKeex8cQu6BzgAoPuWLr9WMUUZnDJWWwC7IBKTUKc2EuCQTCpilTCO7JjcxbikFIUFNyGK1s02T5DZsfJ_kwZY_dbtJ6jZZ2d43Td375Lt2vovJOo7Jy0BsQndoXTLvdnvfRtvXXXtLrirbRH93vlOyfnvN5-_p8nPxMX9epiVD3qdQOU2ZxUpmOtNeOcpRlUJUTEmFReFcYYcAbKGRQsElAq-QOs4KtAwqPiWPp9196H4PPvZm2x1CO7w0TAjFeYZSDRScqDJ0MQZfmX2odzb8GaBm9GVGX2b0Zc6-hs7DqVN77_95pEJkwPkRjNdl0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447336957</pqid></control><display><type>article</type><title>Small Target Tracking in Satellite Videos Using Background Compensation</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yunming ; Wang, Taoyang ; Zhang, Guo ; Cheng, Qian ; Wu, Jia-qi</creator><creatorcontrib>Wang, Yunming ; Wang, Taoyang ; Zhang, Guo ; Cheng, Qian ; Wu, Jia-qi</creatorcontrib><description>Through the use of video technology, satellites can detect dynamic targets and analyze their motion characteristics. Target tracking can extract dynamic information about key ground targets for target monitoring and trajectory prediction by satellite video. Tracking algorithms are affected by target motion characteristics, such as velocity and direction, as well as background characteristics, such as illumination changes, occlusion, and background similarities with the target. However, these problems are seldom studied with satellite video cameras. Current algorithms are unsuitable for satellite video because of the poor texture and color features of the target in satellite video. Therefore, in this article, we enhance target tracking for satellite video technology using two aspects: 1) sample training strategy and 2) sample characterization. We establish a filter training mechanism for the target and background to improve the discrimination ability of the tracking algorithm. We then build a target feature model using a Gabor filter to enhance the contrast between the target and background. Moreover, we propose a tracking state evaluation index to avoid tracking drift. Tracking experiments using nine sets of Jilin-1 satellite videos show that the proposed approach can accurately locate a target under weak feature attributes. Therefore, this article contributes to more robust tracking using satellite video technology.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.2978512</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cameras ; Colour ; Correlation ; Correlation filtering ; Feature extraction ; Gabor filters ; Information processing ; Monitoring ; Occlusion ; robustness ; Satellite tracking ; Satellites ; Target detection ; Target tracking ; target tracking satellite video ; Technology ; Technology utilization ; Training ; Video ; Videos</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-10, Vol.58 (10), p.7010-7021</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1fd802a9f56868e7d0397c44f27579bbddba8681ab8901b35913f90d32b9a21f3</citedby><cites>FETCH-LOGICAL-c293t-1fd802a9f56868e7d0397c44f27579bbddba8681ab8901b35913f90d32b9a21f3</cites><orcidid>0000-0002-5109-4217 ; 0000-0003-2902-7322 ; 0000-0002-3987-5336 ; 0000-0002-6014-5354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9044613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9044613$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yunming</creatorcontrib><creatorcontrib>Wang, Taoyang</creatorcontrib><creatorcontrib>Zhang, Guo</creatorcontrib><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Wu, Jia-qi</creatorcontrib><title>Small Target Tracking in Satellite Videos Using Background Compensation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Through the use of video technology, satellites can detect dynamic targets and analyze their motion characteristics. Target tracking can extract dynamic information about key ground targets for target monitoring and trajectory prediction by satellite video. Tracking algorithms are affected by target motion characteristics, such as velocity and direction, as well as background characteristics, such as illumination changes, occlusion, and background similarities with the target. However, these problems are seldom studied with satellite video cameras. Current algorithms are unsuitable for satellite video because of the poor texture and color features of the target in satellite video. Therefore, in this article, we enhance target tracking for satellite video technology using two aspects: 1) sample training strategy and 2) sample characterization. We establish a filter training mechanism for the target and background to improve the discrimination ability of the tracking algorithm. We then build a target feature model using a Gabor filter to enhance the contrast between the target and background. Moreover, we propose a tracking state evaluation index to avoid tracking drift. Tracking experiments using nine sets of Jilin-1 satellite videos show that the proposed approach can accurately locate a target under weak feature attributes. Therefore, this article contributes to more robust tracking using satellite video technology.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Colour</subject><subject>Correlation</subject><subject>Correlation filtering</subject><subject>Feature extraction</subject><subject>Gabor filters</subject><subject>Information processing</subject><subject>Monitoring</subject><subject>Occlusion</subject><subject>robustness</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Target detection</subject><subject>Target tracking</subject><subject>target tracking satellite video</subject><subject>Technology</subject><subject>Technology utilization</subject><subject>Training</subject><subject>Video</subject><subject>Videos</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgJuE6dNx-ZeUstWoWCYFO3wyQzKalpUmfShf--CS2u3uKeex8cQu6BzgAoPuWLr9WMUUZnDJWWwC7IBKTUKc2EuCQTCpilTCO7JjcxbikFIUFNyGK1s02T5DZsfJ_kwZY_dbtJ6jZZ2d43Td375Lt2vovJOo7Jy0BsQndoXTLvdnvfRtvXXXtLrirbRH93vlOyfnvN5-_p8nPxMX9epiVD3qdQOU2ZxUpmOtNeOcpRlUJUTEmFReFcYYcAbKGRQsElAq-QOs4KtAwqPiWPp9196H4PPvZm2x1CO7w0TAjFeYZSDRScqDJ0MQZfmX2odzb8GaBm9GVGX2b0Zc6-hs7DqVN77_95pEJkwPkRjNdl0Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Yunming</creator><creator>Wang, Taoyang</creator><creator>Zhang, Guo</creator><creator>Cheng, Qian</creator><creator>Wu, Jia-qi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5109-4217</orcidid><orcidid>https://orcid.org/0000-0003-2902-7322</orcidid><orcidid>https://orcid.org/0000-0002-3987-5336</orcidid><orcidid>https://orcid.org/0000-0002-6014-5354</orcidid></search><sort><creationdate>20201001</creationdate><title>Small Target Tracking in Satellite Videos Using Background Compensation</title><author>Wang, Yunming ; Wang, Taoyang ; Zhang, Guo ; Cheng, Qian ; Wu, Jia-qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1fd802a9f56868e7d0397c44f27579bbddba8681ab8901b35913f90d32b9a21f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Colour</topic><topic>Correlation</topic><topic>Correlation filtering</topic><topic>Feature extraction</topic><topic>Gabor filters</topic><topic>Information processing</topic><topic>Monitoring</topic><topic>Occlusion</topic><topic>robustness</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Target detection</topic><topic>Target tracking</topic><topic>target tracking satellite video</topic><topic>Technology</topic><topic>Technology utilization</topic><topic>Training</topic><topic>Video</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunming</creatorcontrib><creatorcontrib>Wang, Taoyang</creatorcontrib><creatorcontrib>Zhang, Guo</creatorcontrib><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Wu, Jia-qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yunming</au><au>Wang, Taoyang</au><au>Zhang, Guo</au><au>Cheng, Qian</au><au>Wu, Jia-qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Target Tracking in Satellite Videos Using Background Compensation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>58</volume><issue>10</issue><spage>7010</spage><epage>7021</epage><pages>7010-7021</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Through the use of video technology, satellites can detect dynamic targets and analyze their motion characteristics. Target tracking can extract dynamic information about key ground targets for target monitoring and trajectory prediction by satellite video. Tracking algorithms are affected by target motion characteristics, such as velocity and direction, as well as background characteristics, such as illumination changes, occlusion, and background similarities with the target. However, these problems are seldom studied with satellite video cameras. Current algorithms are unsuitable for satellite video because of the poor texture and color features of the target in satellite video. Therefore, in this article, we enhance target tracking for satellite video technology using two aspects: 1) sample training strategy and 2) sample characterization. We establish a filter training mechanism for the target and background to improve the discrimination ability of the tracking algorithm. We then build a target feature model using a Gabor filter to enhance the contrast between the target and background. Moreover, we propose a tracking state evaluation index to avoid tracking drift. Tracking experiments using nine sets of Jilin-1 satellite videos show that the proposed approach can accurately locate a target under weak feature attributes. Therefore, this article contributes to more robust tracking using satellite video technology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.2978512</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5109-4217</orcidid><orcidid>https://orcid.org/0000-0003-2902-7322</orcidid><orcidid>https://orcid.org/0000-0002-3987-5336</orcidid><orcidid>https://orcid.org/0000-0002-6014-5354</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2020-10, Vol.58 (10), p.7010-7021 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9044613 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cameras Colour Correlation Correlation filtering Feature extraction Gabor filters Information processing Monitoring Occlusion robustness Satellite tracking Satellites Target detection Target tracking target tracking satellite video Technology Technology utilization Training Video Videos |
title | Small Target Tracking in Satellite Videos Using Background Compensation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Target%20Tracking%20in%20Satellite%20Videos%20Using%20Background%20Compensation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wang,%20Yunming&rft.date=2020-10-01&rft.volume=58&rft.issue=10&rft.spage=7010&rft.epage=7021&rft.pages=7010-7021&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.2978512&rft_dat=%3Cproquest_RIE%3E2447336957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447336957&rft_id=info:pmid/&rft_ieee_id=9044613&rfr_iscdi=true |